Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (3): 136-143    DOI: 10.13306/j.1672-3813.2024.03.018
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含参数不确定及时滞的线性系统自适应模型预测控制
孔令仁1, 亓庆源2
1.青岛大学复杂性科学研究所,山东 青岛 266071;
2.哈尔滨工程大学青岛创新发展基地,山东 青岛 266000
Adaptive Model Predictive Control for Linear Systems with Parametric Uncertainties and Time Delay
KONG Lingren1, QI Qingyuan2
1. Institute of Complexity Science, Qingdao University, Qingdao 266071, China;
2. Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, China
全文: PDF(1607 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 探讨了一类含参数不确定和输入延迟的约束多输入多输出线性系统的自适应模型预测控制问题。提出了一种基于时变更新率的自适应更新律,实现了在输入延迟的情况下更新估计系统的不确定参数。为了处理约束,将优化问题转换为源自于min-max优化可解的简单结构。此外,从理论上证明了闭环系统的渐近稳定性,并证明了提出的自适应模型预测控制策略是递归可行的。最后,数值模拟验证了所提方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔令仁
亓庆源
关键词 自适应模型预测控制输入延迟参数不确定性离散时间系统    
Abstract:This paper investigates the adaptive model predictive control (MPC) for a class of constrained linear multiple-input multiple-output (MIMO) systems with parametric uncertainty and input delay. An adaptive update law based on time-varying updating rate is proposed, which enables the update of uncertain parameters in the presence of input delay. Consequently, to deal with the constraints, we convert the optimization problem into a solvable simple structure, which originates from the min-max optimization. Furthermore, theoretically, it is shown that the closed-loop system is asymptotically stable and the proposed adaptive MPC strategy is proved to be recursively feasible. Finally, numerical simulation is given to illustrate the efficacy of the proposed method.
Key wordsadaptive model predictive control    input delay    parametric uncertainty    discrete-time system
收稿日期: 2023-04-24      出版日期: 2024-11-07
ZTFLH:  O231  
  TP273  
基金资助:国家自然科学基金(61903210);山东省自然科学基金(ZR2019BF002);中国博士后基金(2019M652324,2021T140354);山东省自然科学基金重大基础研究项目(ZR2021ZD14)
通讯作者: 亓庆源(1990-),男,山东青岛人,博士,副教授,主要研究方向为随机控制与最优估计。   
作者简介: 孔令仁(1998-),男,山东泰安人,硕士研究生,主要研究方向为模型预测控制。
引用本文:   
孔令仁, 亓庆源. 含参数不确定及时滞的线性系统自适应模型预测控制[J]. 复杂系统与复杂性科学, 2024, 21(3): 136-143.
KONG Lingren, QI Qingyuan. Adaptive Model Predictive Control for Linear Systems with Parametric Uncertainties and Time Delay[J]. Complex Systems and Complexity Science, 2024, 21(3): 136-143.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.03.018      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I3/136
[1] GARCIA C E, PRETT D M, MORARI M. Model predictive control: theory and practice—a survey[J]. Automatica, 1989, 25(3):335-348.
[2] LEE J H, MORARI M, et al. State-space interpretation of model predictive control[J]. Automatica, 1994, 30(4):707-717.
[3] MAYNE D Q, RAWLINGS J B, et al. Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 36(6): 789-814.
[4] INCREMONA G P, FERRARA A, et al. MPC for robot manipulators with integral sliding modes generation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1299-1307.
[5] KUMAR A S, AHMAD Z. Model predictive control (MPC) and its current issues in chemical engineering[J]. Chemical Engineering Communications, 2012, 199(4): 472-511.
[6] MANZOOR T, SUN Z, XIA Y, et al. MPC based compound flight control strategy for a ducted fan aircraft[J]. Aerospace Science and Technology, 2020, 107: 106264.
[7] ADETOL V, DEHAAN D, GUAY M. Adaptive model predictive control for constrained nonlinear systems[J]. Systems & Control Letters, 2009, 58(5): 320-326.
[8] ZhANG K, SHI Y. Adaptive model predictive control for a class of constrained linear systems with parametric uncertainties[J]. Automatica, 2020, 117: 108-974.
[9] KARIMSHOUSHTARI M, NOVARA C. Design of experiments for nonlinear system identification: a set membership approach[J]. Automatica, 2020, 119: 109-036.
[10] TANASKOVIC M, FAGIANO L, SMITH R, et al. Adaptive receding horizon control for constrained MIMO systems[J]. Automatica, 2014, 50(12): 3019-3029.
[11] BUJARBARUAH M, ZHANG X, TANASKOVIC M, et al. Adaptive stochastic MPC under time-varying uncertainty[J]. IEEE Transactions on Automatic Control, 2020, 66(6): 2840-2845.
[12] LORENZEN M, CANNON M,AllGÖWER F. Robust MPC with recursive model update[J]. Automatica, 2019, 103: 461-471.
[13] TANASKOVIC M, FAGIANO L, GLIGOROVSKI V. Adaptive model predictive control for linear time varying MIMO systems[J].Automatica, 2019, 105: 237-245.
[14] AKPAN V A, HASSAPIS G D. Nonlinear model identification and adaptive model predictive control using neural networks[J]. ISA Transactions, 2011, 50(2): 177-194.
[15] REESE B M, COLLINS JR E G. A graph search and neural network approach to adaptive nonlinear model predictive control[J]. Engineering Applications of Artificial Intelligence, 2016, 55: 250-268.
[16] ZHU B, XIA X. Adaptive model predictive control for unconstrained discrete-time linear systems with parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2015, 61(10): 3171-3176.
[17] ZHU B, ZHENG Z, XIA X. Constrained adaptive model-predictive control for a class of discrete-time linear systems with parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2019, 65(5): 2223-2229.
[18] DHAR A, BHASIN S. Novel adaptivempc design for uncertain mimo discrete-time lti systems with input constraints[C]//2018 17th European Control Conference (ECC). Limassol, Gyprus: IEEE, 2018: 319-324.
[19] DHAR A, BHASIN S. Indirect adaptivempc for discrete-time lti systems with parametric uncertainties[J]. IEEE Transactions on Automatic Control, 2021, 66(11): 5498-5505.
[20] HU Y, GOU L, FAN D, et al. An adaptive model predictive control strategy for a class of discrete-time linear systems with parametric uncertainty[J]. International Journal of Adaptive Control and Signal Processing, 2021, 35(12): 2389-2405.
[1] 吴易, 王庆芝. 基于编队和动态优先级的混合路口通行策略[J]. 复杂系统与复杂性科学, 2024, 21(1): 126-131.
[2] 卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
[3] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[4] 祝晓静, 李科赞, 丁勇. 相继投影同步及其在保密通信中的应用[J]. 复杂系统与复杂性科学, 2022, 19(1): 27-33.
[5] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
[6] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed