Transmission Network Analysis of Respiratory Infectious Disease Clusters
JIAO Ran1, XU Xiaoke1,2
1. School of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China; 2. School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
Abstract:To reveal the transmission characteristics of respiratory infectious diseases clustering epidemic and explore the crucial role of network science in infectious disease control, we constructed and analyzed transmission networks for clustering epidemic, social relationship transmission networks, directed weighted bipartite networks between two gender-based age groups, and their corresponding null model networks based on structured post-epidemiological investigation data. The results indicate that by extracting key indicators from epidemiological investigations, constructing transmission networks, and analyzing them, it is possible to accurately focus on epidemiological characteristics and understand the infection risk among different populations. The application of network science has the potential to enhance our understanding of and response to the risk challenges posed by emerging infectious diseases.
[1] WORLD HEALTH ORGANIZATION. Weekly epidemiological update on COVID-19-16 November 2022[EB/OL].[2022-11-16].https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---16-november-2022. [2] ADAM D C, WU P, WONG J Y, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong[J]. Nature Medicine, 2020, 26(11): 1714-1719. [3] BI Q F, WU Y, MEI S J, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study[J]. The Lancet Infectious diseases, 2020, 20(8):911-919. [4] SUN K Y, WANG W, GAO L D, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2[J]. Science. 2021, 371(6526):eabe2424. [5] 赵善露, 高立冬, 罗垲炜, 等. 湖南省新型冠状病毒肺炎聚集性疫情流行特征分析[J]. 实用预防医学, 2020, 27(5):517-520. ZHAO S L, GAO L D, LUO K W, et al. Clustering epidemic characteristics of coronavirus disease 2019 in Hunan province[J]. Pract Prev Med, 2020, 27(5):517-520. [6] 孙倩莱, 李作超, 谭夏林, 等. 一起新型冠状病毒肺炎聚集性疫情调查[J]. 实用预防医学, 2020, 27(4):389-392. SUN Q L, LI Z C, TAN X L, et al. Clustering of coronavirus disease 2019: a brief report[J]. Pract Prev Med,2020, 27(4):389-392. [7] 刘涛, 徐丽芳, 郭培军. 烟台市一起新型冠状病毒肺炎聚集疫情调查分析[J]. 实用预防医学, 2021, 28(3):266-268. LIU T, XU L F, GUO P J. Investigation and analysis on a cluster epidemic of COVID-19 in Yantai City[J]. Pract Prev Med, 2021, 28(3):266-268. [8] 孙皓宸, 刘肖凡, 许小可, 等. 基于连续感染模型的新冠肺炎校园传播与防控策略分析[J]. 物理学报, 2020, 69(24):74-83. SUN H C, LIU X F, XU X K, et al. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model[J]. Acta Physica Sinica, 2020, 69(24):74-83. [9] 王国强, 张烁, 杨俊元, 等. 耦合不同年龄层接触模式的新冠肺炎传播模型[J]. 物理学报, 2021, 70(1):210-220. Wang G Q, ZHANG S, YANG J Y, et al. Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission[J]. Acta Physica Sinica, 2021,70(1):210-220. [10] 张琳. 新冠肺炎疫情传播的一般增长模型拟合与预测[J]. 电子科技大学学报, 2020, 49(3):345-348. ZHANG L. Fitness of the generalized growth to the COVID-19 dat[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):345-348. [11] 黄振华, 王振宇, 江莉, 等. 基于大规模结构化病例数据的新型冠状病毒传播特征和感染人群分析[J]. 中国科学:信息科学, 2020, 50(12):1882-1902. HUANG Z H, WANG Z Y, JIANG L, et al. Analysis of COVID-19 spread characteristics and infection numbers based on large-scale structured case data[J]. Scientia Sinica Informationis, 2020, 50(12):1882-1902. [12] 佘世红, 杨锦玲. 计算传播研究的起源、演进与展望——基于SSCI数据库的知识图谱分析(2006—2020)[J]. 新闻与传播评论, 2022, 75(3):84-99. SHE S H, YANG J L. The origin, evolution and prospect of international computational communication research: knowledge mapping analysis based on SSCI database[J]. Journalism & Communication Review, 2022, 75(3):84-99. [13] 陈健, 左秀然, 孙淼. 基于BERT在非结构化医疗文本数据处理中的研究与应用[J]. 中国数字医学, 2022, 17(2):30-33. CHEN J, ZUO X R, SUN M. Study and application of unstructured medical text data processing based on BERT[J]. China Digital Medicine, 2022, 17(2):30-33. [14] LIU X F, XU X K, WU Y. Mobility, exposure, and epidemiological timelines of COVID-19 infections in China outside Hubei province[J]. Sci Data, 2021, 8(1): 54. [15] METTLER S K, KIM J, MAATHUIS M H. Diagnostic serial interval as a novel indicator for contact tracing effectiveness exemplified with the SARS-CoV-2/COVID-19 outbreak in South Korea[J]. Int J Infect Dis, 2020, 99:346-351. [16] LAU M S, GRENFELL B, THOMAS M, et al. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA[J]. Proc Natl Acad Sci, 2020, 117(36):22430-22435. [17] 廖敬仪, 杨子曦, 周涛.新冠病例分析揭示女性的护理角色和高易感性[J]. 电子科技大学学报, 2020, 49(3):425-430. LIAO J Y, YANG Z X, ZHOU T. Nursing role results in higher susceptibility of women: analyzing family clusters during COVID-19 outbreaks[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):425-430. [18] 尚可可, 许小可. 基于置乱算法的复杂网络零模型构造及其应用[J]. 电子科技大学学报, 2014, 43(1):7-20. SHANG K K, XU X K. Construction and application for null models of complex networks based on randomized algorithms[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1):7-20.