Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (3): 11-16    DOI: 10.13306/j.1672-3813.2025.03.002
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
呼吸道传染病聚集性疫情的传播网络分析
焦然1, 许小可1,2
1.大连民族大学信息与通信工程学院,辽宁 大连 116600;
2.北京师范大学新闻传播学院,北京 100875
Transmission Network Analysis of Respiratory Infectious Disease Clusters
JIAO Ran1, XU Xiaoke1,2
1. School of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China;
2. School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
全文: PDF(2851 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为揭示呼吸道传染病聚集性疫情的传播特性,探索网络科学在传染病防控中的重要作用,基于结构化后的流调信息,构建并分析聚集性疫情传播网络,社会关系传播网络,两性别不同年龄层间的有向含权二部分网络及其对应零模型网络。结果表明,提取流调中的关键指标,构建传播网络并加以分析,能精准聚焦流行病学特征,掌握不同人群的感染风险。网络科学的应用对认识和理解疫情具有一定潜力,可帮助公众进一步应对新发传染病带来的风险挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦然
许小可
关键词 呼吸道传染病聚集性疫情网络科学传播网络    
Abstract:To reveal the transmission characteristics of respiratory infectious diseases clustering epidemic and explore the crucial role of network science in infectious disease control, we constructed and analyzed transmission networks for clustering epidemic, social relationship transmission networks, directed weighted bipartite networks between two gender-based age groups, and their corresponding null model networks based on structured post-epidemiological investigation data. The results indicate that by extracting key indicators from epidemiological investigations, constructing transmission networks, and analyzing them, it is possible to accurately focus on epidemiological characteristics and understand the infection risk among different populations. The application of network science has the potential to enhance our understanding of and response to the risk challenges posed by emerging infectious diseases.
Key wordsrespiratory infectious diseases    clustering epidemic    network science    transmission network
收稿日期: 2023-07-21      出版日期: 2025-10-09
ZTFLH:  TP391  
  N94  
基金资助:国家自然科学基金(62173065);辽宁省自然科学基金(2020-MZLH-22)
通讯作者: 许小可(1979-),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 焦然(1998-),男,吉林延边人,硕士研究生,主要研究方向为数据科学与大数据技术。
引用本文:   
焦然, 许小可. 呼吸道传染病聚集性疫情的传播网络分析[J]. 复杂系统与复杂性科学, 2025, 22(3): 11-16.
JIAO Ran, XU Xiaoke. Transmission Network Analysis of Respiratory Infectious Disease Clusters[J]. Complex Systems and Complexity Science, 2025, 22(3): 11-16.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.03.002      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I3/11
[1] WORLD HEALTH ORGANIZATION. Weekly epidemiological update on COVID-19-16 November 2022[EB/OL].[2022-11-16].https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---16-november-2022.
[2] ADAM D C, WU P, WONG J Y, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong[J]. Nature Medicine, 2020, 26(11): 1714-1719.
[3] BI Q F, WU Y, MEI S J, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study[J]. The Lancet Infectious diseases, 2020, 20(8):911-919.
[4] SUN K Y, WANG W, GAO L D, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2[J]. Science. 2021, 371(6526):eabe2424.
[5] 赵善露, 高立冬, 罗垲炜, 等. 湖南省新型冠状病毒肺炎聚集性疫情流行特征分析[J]. 实用预防医学, 2020, 27(5):517-520.
ZHAO S L, GAO L D, LUO K W, et al. Clustering epidemic characteristics of coronavirus disease 2019 in Hunan province[J]. Pract Prev Med, 2020, 27(5):517-520.
[6] 孙倩莱, 李作超, 谭夏林, 等. 一起新型冠状病毒肺炎聚集性疫情调查[J]. 实用预防医学, 2020, 27(4):389-392.
SUN Q L, LI Z C, TAN X L, et al. Clustering of coronavirus disease 2019: a brief report[J]. Pract Prev Med,2020, 27(4):389-392.
[7] 刘涛, 徐丽芳, 郭培军. 烟台市一起新型冠状病毒肺炎聚集疫情调查分析[J]. 实用预防医学, 2021, 28(3):266-268.
LIU T, XU L F, GUO P J. Investigation and analysis on a cluster epidemic of COVID-19 in Yantai City[J]. Pract Prev Med, 2021, 28(3):266-268.
[8] 孙皓宸, 刘肖凡, 许小可, 等. 基于连续感染模型的新冠肺炎校园传播与防控策略分析[J]. 物理学报, 2020, 69(24):74-83.
SUN H C, LIU X F, XU X K, et al. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model[J]. Acta Physica Sinica, 2020, 69(24):74-83.
[9] 王国强, 张烁, 杨俊元, 等. 耦合不同年龄层接触模式的新冠肺炎传播模型[J]. 物理学报, 2021, 70(1):210-220.
Wang G Q, ZHANG S, YANG J Y, et al. Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission[J]. Acta Physica Sinica, 2021,70(1):210-220.
[10] 张琳. 新冠肺炎疫情传播的一般增长模型拟合与预测[J]. 电子科技大学学报, 2020, 49(3):345-348.
ZHANG L. Fitness of the generalized growth to the COVID-19 dat[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):345-348.
[11] 黄振华, 王振宇, 江莉, 等. 基于大规模结构化病例数据的新型冠状病毒传播特征和感染人群分析[J]. 中国科学:信息科学, 2020, 50(12):1882-1902.
HUANG Z H, WANG Z Y, JIANG L, et al. Analysis of COVID-19 spread characteristics and infection numbers based on large-scale structured case data[J]. Scientia Sinica Informationis, 2020, 50(12):1882-1902.
[12] 佘世红, 杨锦玲. 计算传播研究的起源、演进与展望——基于SSCI数据库的知识图谱分析(2006—2020)[J]. 新闻与传播评论, 2022, 75(3):84-99.
SHE S H, YANG J L. The origin, evolution and prospect of international computational communication research: knowledge mapping analysis based on SSCI database[J]. Journalism & Communication Review, 2022, 75(3):84-99.
[13] 陈健, 左秀然, 孙淼. 基于BERT在非结构化医疗文本数据处理中的研究与应用[J]. 中国数字医学, 2022, 17(2):30-33.
CHEN J, ZUO X R, SUN M. Study and application of unstructured medical text data processing based on BERT[J]. China Digital Medicine, 2022, 17(2):30-33.
[14] LIU X F, XU X K, WU Y. Mobility, exposure, and epidemiological timelines of COVID-19 infections in China outside Hubei province[J]. Sci Data, 2021, 8(1): 54.
[15] METTLER S K, KIM J, MAATHUIS M H. Diagnostic serial interval as a novel indicator for contact tracing effectiveness exemplified with the SARS-CoV-2/COVID-19 outbreak in South Korea[J]. Int J Infect Dis, 2020, 99:346-351.
[16] LAU M S, GRENFELL B, THOMAS M, et al. Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA[J]. Proc Natl Acad Sci, 2020, 117(36):22430-22435.
[17] 廖敬仪, 杨子曦, 周涛.新冠病例分析揭示女性的护理角色和高易感性[J]. 电子科技大学学报, 2020, 49(3):425-430.
LIAO J Y, YANG Z X, ZHOU T. Nursing role results in higher susceptibility of women: analyzing family clusters during COVID-19 outbreaks[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):425-430.
[18] 尚可可, 许小可. 基于置乱算法的复杂网络零模型构造及其应用[J]. 电子科技大学学报, 2014, 43(1):7-20.
SHANG K K, XU X K. Construction and application for null models of complex networks based on randomized algorithms[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(1):7-20.
[1] 刘权辉, 王伟, 唐明. 多层耦合网络传播综述[J]. 复杂系统与复杂性科学, 2016, 13(1): 48-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed