Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (1): 48-57    DOI: 10.13306/j.1672-3813.2016.01.003
  本期目录 | 过刊浏览 | 高级检索 |
多层耦合网络传播综述
刘权辉, 王伟, 唐明
电子科技大学互联网科学中心, 成都 611731
The Review of Spreading Dynamics on Multilayer Coupled Networks
LIU Quanhui, WANG Wei, TANG Ming
Web Science Center, University of Electronic Science and Technology of China, Chengdu 611731, China
全文: PDF(1354 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 简要介绍多层耦合网络上传播动力学方面的阶段性研究进展以及存在的一些问题,主要关注的内容:多层耦合网络上的生物传播、社会传播、生物-社会耦合传播及多层耦合网络面临的一些挑战性问题。这些阶段性的研究成果从多层耦合网络的新角度加深了我们对真实传播过程及其机制的理解。能更好地控制疾病传播和减少它对人类的危害,深入探讨相关问题将有助于明确下进一步研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘权辉
王伟
唐明
关键词 网络科学多层耦合网络传播动力学    
Abstract:For a long time, spreading dynamics is a very important subject in network science. Recent studies on the spreading dynamics on the multilayer coupled networks attract attention both at home and abroad. This review article introduces the progress of spreading dynamics on the multilayer coupled networks and some open questions, mainly focusing on the following four aspects: (1) biological spreading on the multilayer coupled networks; (2)social contagion on the multilayer coupled networks; (3) biological-social coupling transmission on the multilayer coupled networks; and (4) some problems on multilayer coupled networks. These episodes of research from a new angle of multilayer coupled network deepened our understanding of the real propagations. The problems discussed here will help to clear the direction of next stage
Key wordsnetwork science    multilayer coupled networks    spreading dynamics
收稿日期: 2015-08-24      出版日期: 2025-02-25
ZTFLH:  N94  
  N93  
基金资助:国家自然科学基金(11575041)
通讯作者: 唐明(1981-),四川资阳人,博士,副教授,主要研究方向为网络科学理论,网络传播动力学。   
作者简介: 刘权辉(1990-),男,湖南邵阳人,博士研究生,主要研究方向为复杂网络传播动力学。
引用本文:   
刘权辉, 王伟, 唐明. 多层耦合网络传播综述[J]. 复杂系统与复杂性科学, 2016, 13(1): 48-57.
LIU Quanhui, WANG Wei, TANG Ming. The Review of Spreading Dynamics on Multilayer Coupled Networks[J]. Complex Systems and Complexity Science, 2016, 13(1): 48-57.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.01.003      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I1/48
[1] Anderson R M, May R M. Infectious Diseases in Humans[M].Oxford: Oxford University Press, 1992.
[2] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J].Phys Rev Lett, 2001, 86(14): 3200-3203.
[3] Shu P, Tang M, Gong K, et al. Effects of weak ties on epidemic predictability on community networks[J].Chaos, 2012, 22(4), 043124.
[4] Tang M, Liu Z, Li B. Epidemic spreading by objective traveling[J].Europhys Lett, 2009, 87(1): 18005.
[5] Wang W, Tang M, Zhang H F, et al. Epidemic spreading on complex networks with general degree and weight distributions[J].Phys Rev E, 2014, 90: 042803.
[6] Shu P, Wang W, Tang M, et al. Numerical identification of epidemic threshold for susceptible-infected-recovered model on finite-size[J].Chaos, 2015, 25:063104.
[7] Young H P. The dynamics of social innovation[J].Proc Natl Acad Sci USA, 2011, 108: 21285-21291.
[8] Montgomery R L. The diffusion of religions[D].Lanham: University Press of America, 1996.
[9] Centola D. An experimental study of homophily in the adoption of health behavior[J].Science, 2011, 334:1269-1271.
[10] Wang W, Tang M, Zhang H F, et al. Dynamics of social contagions with memory of nonredundant information[J].Phys Rev E, 2015, 92: 012820.
[11] Granovetter M. Threshold models of collective behavior[J].Am J Sociol, 1973, 78: 1360.
[12] Watts D J. A simple model of global cascades on random networks[J].Proc Natl Acad Sci USA, 2002, 99: 5766-5771.
[13] Daley D J, Kendall D G. Epidemics and rumours[J].1964, 204:1118-1118.
[14] Zheng M, L L, Zhao M. Spreading in online social networks: the role of social reinforcement[J].Phys Rev E, 2013, 88(1):012818.
[15] Meyers L A, Pourbohloul B, Newman M E J, et al. Network theory and SARS: predicting outbreak diversity[J].J Theor Biol, 2005, 232: 71-81.
[16] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J].Proc Natl Acad Sci USA, 2004, 101: 15124.
[17] Garten R J, Davis C T, Russell C A, et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circu lating in humans[J].Science, 2009, 325: 197-201.
[18] Leroy E M, Rouquet P, Formenty P, et al. Multiple ebola virus transmission events and rapid decline of central african wildlife[J].Science, 2004, 303: 387-390.
[19] Pastor-Satorras R, Castellano C, Van Mieghem P, et al. Epidemic processes in complex networks[DB/OL].[2015-08-22].http://arxiv.org/abg/1408.2701.
[20] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J].Phys Rev E, 2002, 65:035108(R).
[21] Wang R S, Albert R. Effects of community structure on the dynamics of random threshold networks[J].Phys Rev E, 2013, 87: 012810.
[22] Newman M E J. Random graphs with clustering[J].Phys Rev E, 2009, 103: 058701.
[23] Barthelemy M, Barrat A, Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Phys Rev E, 2004, 92: 178701
[24] Ruan Z, Tang M, Liu Z. How the contagion at links influences epidemic spreading[J].The European Physical Journal B, 2013, 86(4): 1-6.
[25] Zhu Y X, Zhang X G, Sun G Q, et al. Influence of reciprocal links in social networks[J].PLoS ONE, 2014, 9(7): e103007.
[26] Cui A X, Wang W, Tang M, et al. Efficient allocation of heterogeneous response times in information spreading process[J].Chaos, 2014, 24: 033113.
[27] Barthelmy M, Barrat A, Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Phys Rev E, 2004, 92: 178701.
[28] Boguna M, Pastor-Satorras R, Vespignani A. Absence of epidemic threshold in scale-free networks with degree correlations[J].Phys Rev Lett, 2003, 90(2): 028701.
[29] Boguna M, Castellano C, Pastor-Satorras R. Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks[J].Phys Rev Lett, 2013, 111(6): 068701.
[30] Castellano C, Pastor-Satorras R. Thresholds for epidemic spreading in networks[J].Phys Rev Lett, 2010, 105: 218701.
[31] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J].Nat Phys, 2010, 6:888-893.
[32] Liu Y, Tang M, Zhou T, et al. Core-like groups resulting in invalidation of k-shell decomposition analysis[J].Sci Rep, 2014, 5(9602).
[33] Zhong L F, Liu J G, Shang M S. Iterative resource allocation based on propagation feature of node for identifying the influential nodes[DB/OL].
[2015-06-08].http://dx.doi.org/10.1016/j.physleta.2015.05.021.
[34] Zhao X Y, Huang B, Tang M, et al. Identifying effective multiple spreaders by coloring complex networks[J].Europhys Lett, 2014, 108(6): 68005.
[35] Liu Y, Tang M, Zhou T, et al. Improving the accuracy of the k-shell method by removing redundant links-from a perspective of spreading dynamics[DB/OL].[2015-08-06].http://arxiv.org/pdf/ 1505.07354.pdf.
[36] Shen Z, Wang W X, Fan Y, et al. Reconstructing propagation networks with natural diversity and identifying hidden sources[J].Nat Commun, 2014, 5:4323.
[37] Brockmann D, Helbing D. The hidden geometry of complex network-driven contagion phenomena[J].Science, 2013, 342: 1337-1442.
[38] 王伟,杨慧,龚凯,等. 复杂网络上的局域免疫研究[J].电子科技大学学报,2013,42(6),817-830.
Wang Wei, Yang Hui, Gong Kai, et al. Local immunization algorithm on complex networks[J],Journal of University of Elec tronic Science and Technology of China, 2013, 42(6): 817-830.
[39] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J].Phys Rev E, 2002, 65: 036104.
[40] Zhang H F, Shu P P, Tang M, et al. Preferential imitation of vaccinating behavior can invalidate the targeted subsidy on complex net work[J].arXiv, 2015, arXiv:1503.08048.
[41] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and populations[J].Phys Rev Lett, 2003, 91: 247901.
[42] Ruan Z, Tang M, Liu Z. Epidemic spreading with information-driven vaccination[J].Phys Rev E, 2012, 86, 036117.
[43] Yang H, Tang M, Zhang H F. Efficient community-based control strategies in adaptive networks[J].New J Phys, 2012, 14: 123017.
[44] Singh P, Sreenivasan S, Szymanski B K, et al. Threshold-limited spreading in social networks with multiple initiators[J].Sci Rep, 2013, 3: 2330.
[45] Nematzadeh A, Ferrara E, Flammini A, et al. Optimal network modularity for information diffusion[J].Phys Rev Lett, 2014, 113: 088701.
[46] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J].Phys Rev E, 2007, 75: 056103.
[47] Gleeson J P. Cascades on correlated and modular random networks[J].Phys Rev E, 2008; 77: 046117.
[48] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//ACM SIGKDD, 2003, 137-146.
[49] Chen W, Yuan Y, Zhang L. Scalable influence maximization in social networks under the linear threshold model[C]//IEEE ICDM, 2010, 88-97.
[50] Karimi F, Holme P. Threshold model of cascades in empirical temporal networks[J].Physica A, 2013, 392:3476-3483.
[51] Funk S, Gilad E, Watkins C, et al. The spread of awareness and its impact on epidemic outbreaks[J].Proc Natl Acad Sci USA, 2009, 106: 6872-6877.
[52] Funk S, Gilad E, Jansen V A A. Endemic disease, awareness, and local behavioural response[J].Journal of theoretical biology, 2010, 264: 501-509.
[53] Zhang H F, Wu Z X, Tang M, et al. Effects of behavioral response and vaccination policy on epidemic spreading-an approach based on evolutionary-game dynamics[J].Sci Rep, 2014, 4(5666).
[54] Zhang H F, Xie J R, Tang M, et al. Suppression of epidemic spreading in complex networks by local information based behavioral responses[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 2014, 24(4): 043106.
[55] Boccaleti S, Bianconi G, Criado R, et al. Structure and dynamics of multilayer networks[J].Phys Rep, 2014, 544:1-122.
[56] Kivel M, Arenas A, Barthelemy M, et al. Multilayer networks[J].J Complex Netw, 2014, 2:203-271.
[57] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks[J].Nature, 2010, 464:2015-2028.
[58] Parshani R, Buldyrev S V, Havlin S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition[J].Phys Rev Lett, 2010, 105: 048701.
[59] Xu X L, Qu Y Q, Guan S, et al. Interconnecting bilayer networks[J].Europhy Lett, 2011, 93:68002.
[60] Wang W, Tang M, Yang H, et al. Asymmetrically interacting spreading dynamics on complex layered networks[J].Sci Rep, 2014, 4:5097.
[61] Granell C, Gmez S, Arenas A. Dynamical interplay between awareness and epidemic spreading in multiplex networks[J].Phys Rev lett,2013,111: 128701.
[62] Min B, Goh K I. Layer-crossing overhead and information spreading in multiplex social networks[DB/OL].[2015-08-06].http://arxiv.org/pdf/1307.2967.pdf.
[63] Gao J X, Buldyrev S V, Havlin S, et al. Robustness of a network of networks[J].Phys Rev Lett, 2011,107:195701.
[64] Vespignani A. The fragility of interdependency[J].Nature, 2010,464:984-985.
[65] Wang Z, Wang L, Perc M. Degree mixing in multilayer networks impedes the evolution of cooperation[J].Phys Rev E, 2014, 89:052813.
[66] Wang Z, Szolnoki A, Perc M. Optimal interdependence between networks for the evolution of cooperation[J].Sci Rep, 2013, 3(2470).
[67] Aguirre J, Sevilla-Escoboza R, Gutirrez R, et al. Synchronization of interconnected networks: the role of connector nodes[J].Phys Rev Lett, 2014, 112(24), 248701.
[68] Barreto E, Hunt B, Ott E, et al. Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators[J].Phys Rev E, 2008, 77(3), 036107.
[69] Zhang X Y, Boccaletti S, Guan S G, et al. Explosive synchronization in adaptive and multilayer networks[J].Phys Rev Lett, 2015, 114, 038705.
[70] Saumell-Mendiola A, Serrano M, Bogun M. Epidemic spreading on interconnected networks[J].Phys Rev E, 2012, 86: 026106.
[71] Dickison M, Havlin S, Stanley H E. Epidemics on interconnected networks[J].Phys Rev E, 2012, 85: 066109.
[72] Wang H, Li Q, D’Agostino G, et al. Effect of the interconnected network structure on the epidemic threshold[J].Phys Rev E, 2013, 88(2): 022801.
[73] Buono C, Alvarez-Zuzek L G, Macri P A, et al. Epidemics in partially overlapped multiplex networks[J].PloS ONE, 2014, 9(3): e92200.
[74] Zhao D, Wang L, Li S, et al. Immunization of epidemics in multiplex networks[J].PLoS ONE, 2014, 9(11): e112018.
[75] Elvis H W, Wang X W, Xu C, et al. Suppressed epidemics in multi-relational networks[DB/OL].[2015-08-06].http://journals.aps.org/pre/abstract/10.1103/Phys Rev E.92.022812.
[76] 李睿琪, 唐明, 许伯铭. 多关系网络上的流行病传播动力学研究[J].物理学报, 2013, 62(16): 168903-168903.
Li Ruiqi, Tang Ming, XU Boming. Epidemic spreading on multi-relational networks[J].Acta Phys Sin, 2013, 62(16): 168903.
[77] Brummitt C D, Lee K M, Goh K I. Multiplexity-facilitated cascades in networks[J].Phys Rev E, 2012, 85:045102(R).
[78] Yagan O, Gligor V. Analysis of complex contagions in random multiplex networks[J].Phys Rev E, 2012, 86(3):036103.
[79] Cozzo E, Banos R A, Meloni S, et al. Contact-based social contagion in multiplex networks[J].Phys Rev E, 2013, 88(5): 050801.
[80] Lee K M, Brummitt C D, Goh K L. Threshold cascades with response heterogeneity in multiplex networks[J].Phys Rev E, 2014, 90:062816.
[81] Bauch C T, Galvani A P. Social factors in epidemiology[J].Science, 2013, 342:47-49.
[82] Granell C, Gmez S, Arenas A. Competing spreading processes on multiplex networks: awareness and epidemics[J].Phys Rev E, 2014, 90: 012808.
[83] Guo Q T, Jiang X, Lei Y J, et al. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks[J].Phys Rev E, 2015, 91: 012822.
[84] Massaro E, Bagnoli F. Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method[J].Phys Rev E, 2014, 90: 052817.
[85] Fortunato S. Community detection in graphs[J].Phys Rep, 2010, 486: 75-174.
[86] Rogers E. The Diffusion of Innovations[M].fifth ed. New York: Free Press, 1995.
[87] Newman M E J. Networks: an Introduction[M].Oxford: Oxford University Press, 2010.
[88] Newman M E J. The structure and function of complex networks[J].SIAM Rev, 2003, 45:167-256.
[89] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J].Nat Phys, 2010, 6:888-893.
[90] Aral S, Walker D. Identifying influential and susceptible members of social networks[J].Science, 2012, 337:337-341.
[91] Domenico M D, Solé-Ribalta A, Omodei E, et al. Ranking in interconnected multilayer networks reveals versatile nodes[J].Nat Com Mun, 2015, 6:6868.
[92] Lokhov A Y, Mézard M, Ohta H, et al. Inferring the origin of an epidemic with a dynamic message-passing algorithm[J].Phys Rev E, 2014, 90: 012801.
[93] 方锦清,唐明,面临NON前沿课题的挑战与网络传播的若干研究进展,2015第11届中国网络科学论坛大会报告[R].上海:上海大学,2015.
Fang Jinqing, Tang Ming. Facing the challenge of NON frontier subject and the progress of spreading dynamics on network(in Chinese) . The 11 th network science conference of China in 2015[R].Shanghai:University of Shanghai,2015.
[94] Fang J Q,Tang M. Network Science Faces the Challenge and Opportunity: Exploring "network of networks" and its unified theoretical framework[J],to be published, 2015.
[95] 方锦清,探索超网络金字塔,超图与超网络专题研讨会[R].西宁,2015.
Fang Jinqing. The workshop of exploring the super network pyramid, hypergraph and super network(in Chinese)[R]. Xining,2015
[1] 郑国庆, 唐清干, 祝光湖. 两层星型网络上的传染病建模和控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 51-57.
[2] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
[3] 刘影, 王伟, 尚明生, 唐明. 复杂网络上疫情与舆情的传播及其基于免疫的控制策略[J]. 复杂系统与复杂性科学, 2016, 13(1): 74-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed