Abstract:For a long time, spreading dynamics is a very important subject in network science. Recent studies on the spreading dynamics on the multilayer coupled networks attract attention both at home and abroad. This review article introduces the progress of spreading dynamics on the multilayer coupled networks and some open questions, mainly focusing on the following four aspects: (1) biological spreading on the multilayer coupled networks; (2)social contagion on the multilayer coupled networks; (3) biological-social coupling transmission on the multilayer coupled networks; and (4) some problems on multilayer coupled networks. These episodes of research from a new angle of multilayer coupled network deepened our understanding of the real propagations. The problems discussed here will help to clear the direction of next stage
刘权辉, 王伟, 唐明. 多层耦合网络传播综述[J]. 复杂系统与复杂性科学, 2016, 13(1): 48-57.
LIU Quanhui, WANG Wei, TANG Ming. The Review of Spreading Dynamics on Multilayer Coupled Networks[J]. Complex Systems and Complexity Science, 2016, 13(1): 48-57.
[1] Anderson R M, May R M. Infectious Diseases in Humans[M].Oxford: Oxford University Press, 1992. [2] Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J].Phys Rev Lett, 2001, 86(14): 3200-3203. [3] Shu P, Tang M, Gong K, et al. Effects of weak ties on epidemic predictability on community networks[J].Chaos, 2012, 22(4), 043124. [4] Tang M, Liu Z, Li B. Epidemic spreading by objective traveling[J].Europhys Lett, 2009, 87(1): 18005. [5] Wang W, Tang M, Zhang H F, et al. Epidemic spreading on complex networks with general degree and weight distributions[J].Phys Rev E, 2014, 90: 042803. [6] Shu P, Wang W, Tang M, et al. Numerical identification of epidemic threshold for susceptible-infected-recovered model on finite-size[J].Chaos, 2015, 25:063104. [7] Young H P. The dynamics of social innovation[J].Proc Natl Acad Sci USA, 2011, 108: 21285-21291. [8] Montgomery R L. The diffusion of religions[D].Lanham: University Press of America, 1996. [9] Centola D. An experimental study of homophily in the adoption of health behavior[J].Science, 2011, 334:1269-1271. [10] Wang W, Tang M, Zhang H F, et al. Dynamics of social contagions with memory of nonredundant information[J].Phys Rev E, 2015, 92: 012820. [11] Granovetter M. Threshold models of collective behavior[J].Am J Sociol, 1973, 78: 1360. [12] Watts D J. A simple model of global cascades on random networks[J].Proc Natl Acad Sci USA, 2002, 99: 5766-5771. [13] Daley D J, Kendall D G. Epidemics and rumours[J].1964, 204:1118-1118. [14] Zheng M, L L, Zhao M. Spreading in online social networks: the role of social reinforcement[J].Phys Rev E, 2013, 88(1):012818. [15] Meyers L A, Pourbohloul B, Newman M E J, et al. Network theory and SARS: predicting outbreak diversity[J].J Theor Biol, 2005, 232: 71-81. [16] Hufnagel L, Brockmann D, Geisel T. Forecast and control of epidemics in a globalized world[J].Proc Natl Acad Sci USA, 2004, 101: 15124. [17] Garten R J, Davis C T, Russell C A, et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circu lating in humans[J].Science, 2009, 325: 197-201. [18] Leroy E M, Rouquet P, Formenty P, et al. Multiple ebola virus transmission events and rapid decline of central african wildlife[J].Science, 2004, 303: 387-390. [19] Pastor-Satorras R, Castellano C, Van Mieghem P, et al. Epidemic processes in complex networks[DB/OL].[2015-08-22].http://arxiv.org/abg/1408.2701. [20] Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks[J].Phys Rev E, 2002, 65:035108(R). [21] Wang R S, Albert R. Effects of community structure on the dynamics of random threshold networks[J].Phys Rev E, 2013, 87: 012810. [22] Newman M E J. Random graphs with clustering[J].Phys Rev E, 2009, 103: 058701. [23] Barthelemy M, Barrat A, Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Phys Rev E, 2004, 92: 178701 [24] Ruan Z, Tang M, Liu Z. How the contagion at links influences epidemic spreading[J].The European Physical Journal B, 2013, 86(4): 1-6. [25] Zhu Y X, Zhang X G, Sun G Q, et al. Influence of reciprocal links in social networks[J].PLoS ONE, 2014, 9(7): e103007. [26] Cui A X, Wang W, Tang M, et al. Efficient allocation of heterogeneous response times in information spreading process[J].Chaos, 2014, 24: 033113. [27] Barthelmy M, Barrat A, Pastor-Satorras R, et al. Velocity and hierarchical spread of epidemic outbreaks in scale-free networks[J].Phys Rev E, 2004, 92: 178701. [28] Boguna M, Pastor-Satorras R, Vespignani A. Absence of epidemic threshold in scale-free networks with degree correlations[J].Phys Rev Lett, 2003, 90(2): 028701. [29] Boguna M, Castellano C, Pastor-Satorras R. Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks[J].Phys Rev Lett, 2013, 111(6): 068701. [30] Castellano C, Pastor-Satorras R. Thresholds for epidemic spreading in networks[J].Phys Rev Lett, 2010, 105: 218701. [31] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J].Nat Phys, 2010, 6:888-893. [32] Liu Y, Tang M, Zhou T, et al. Core-like groups resulting in invalidation of k-shell decomposition analysis[J].Sci Rep, 2014, 5(9602). [33] Zhong L F, Liu J G, Shang M S. Iterative resource allocation based on propagation feature of node for identifying the influential nodes[DB/OL]. [2015-06-08].http://dx.doi.org/10.1016/j.physleta.2015.05.021. [34] Zhao X Y, Huang B, Tang M, et al. Identifying effective multiple spreaders by coloring complex networks[J].Europhys Lett, 2014, 108(6): 68005. [35] Liu Y, Tang M, Zhou T, et al. Improving the accuracy of the k-shell method by removing redundant links-from a perspective of spreading dynamics[DB/OL].[2015-08-06].http://arxiv.org/pdf/ 1505.07354.pdf. [36] Shen Z, Wang W X, Fan Y, et al. Reconstructing propagation networks with natural diversity and identifying hidden sources[J].Nat Commun, 2014, 5:4323. [37] Brockmann D, Helbing D. The hidden geometry of complex network-driven contagion phenomena[J].Science, 2013, 342: 1337-1442. [38] 王伟,杨慧,龚凯,等. 复杂网络上的局域免疫研究[J].电子科技大学学报,2013,42(6),817-830. Wang Wei, Yang Hui, Gong Kai, et al. Local immunization algorithm on complex networks[J],Journal of University of Elec tronic Science and Technology of China, 2013, 42(6): 817-830. [39] Pastor-Satorras R, Vespignani A. Immunization of complex networks[J].Phys Rev E, 2002, 65: 036104. [40] Zhang H F, Shu P P, Tang M, et al. Preferential imitation of vaccinating behavior can invalidate the targeted subsidy on complex net work[J].arXiv, 2015, arXiv:1503.08048. [41] Cohen R, Havlin S, Ben-Avraham D. Efficient immunization strategies for computer networks and populations[J].Phys Rev Lett, 2003, 91: 247901. [42] Ruan Z, Tang M, Liu Z. Epidemic spreading with information-driven vaccination[J].Phys Rev E, 2012, 86, 036117. [43] Yang H, Tang M, Zhang H F. Efficient community-based control strategies in adaptive networks[J].New J Phys, 2012, 14: 123017. [44] Singh P, Sreenivasan S, Szymanski B K, et al. Threshold-limited spreading in social networks with multiple initiators[J].Sci Rep, 2013, 3: 2330. [45] Nematzadeh A, Ferrara E, Flammini A, et al. Optimal network modularity for information diffusion[J].Phys Rev Lett, 2014, 113: 088701. [46] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J].Phys Rev E, 2007, 75: 056103. [47] Gleeson J P. Cascades on correlated and modular random networks[J].Phys Rev E, 2008; 77: 046117. [48] Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C]//ACM SIGKDD, 2003, 137-146. [49] Chen W, Yuan Y, Zhang L. Scalable influence maximization in social networks under the linear threshold model[C]//IEEE ICDM, 2010, 88-97. [50] Karimi F, Holme P. Threshold model of cascades in empirical temporal networks[J].Physica A, 2013, 392:3476-3483. [51] Funk S, Gilad E, Watkins C, et al. The spread of awareness and its impact on epidemic outbreaks[J].Proc Natl Acad Sci USA, 2009, 106: 6872-6877. [52] Funk S, Gilad E, Jansen V A A. Endemic disease, awareness, and local behavioural response[J].Journal of theoretical biology, 2010, 264: 501-509. [53] Zhang H F, Wu Z X, Tang M, et al. Effects of behavioral response and vaccination policy on epidemic spreading-an approach based on evolutionary-game dynamics[J].Sci Rep, 2014, 4(5666). [54] Zhang H F, Xie J R, Tang M, et al. Suppression of epidemic spreading in complex networks by local information based behavioral responses[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 2014, 24(4): 043106. [55] Boccaleti S, Bianconi G, Criado R, et al. Structure and dynamics of multilayer networks[J].Phys Rep, 2014, 544:1-122. [56] Kivel M, Arenas A, Barthelemy M, et al. Multilayer networks[J].J Complex Netw, 2014, 2:203-271. [57] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks[J].Nature, 2010, 464:2015-2028. [58] Parshani R, Buldyrev S V, Havlin S. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition[J].Phys Rev Lett, 2010, 105: 048701. [59] Xu X L, Qu Y Q, Guan S, et al. Interconnecting bilayer networks[J].Europhy Lett, 2011, 93:68002. [60] Wang W, Tang M, Yang H, et al. Asymmetrically interacting spreading dynamics on complex layered networks[J].Sci Rep, 2014, 4:5097. [61] Granell C, Gmez S, Arenas A. Dynamical interplay between awareness and epidemic spreading in multiplex networks[J].Phys Rev lett,2013,111: 128701. [62] Min B, Goh K I. Layer-crossing overhead and information spreading in multiplex social networks[DB/OL].[2015-08-06].http://arxiv.org/pdf/1307.2967.pdf. [63] Gao J X, Buldyrev S V, Havlin S, et al. Robustness of a network of networks[J].Phys Rev Lett, 2011,107:195701. [64] Vespignani A. The fragility of interdependency[J].Nature, 2010,464:984-985. [65] Wang Z, Wang L, Perc M. Degree mixing in multilayer networks impedes the evolution of cooperation[J].Phys Rev E, 2014, 89:052813. [66] Wang Z, Szolnoki A, Perc M. Optimal interdependence between networks for the evolution of cooperation[J].Sci Rep, 2013, 3(2470). [67] Aguirre J, Sevilla-Escoboza R, Gutirrez R, et al. Synchronization of interconnected networks: the role of connector nodes[J].Phys Rev Lett, 2014, 112(24), 248701. [68] Barreto E, Hunt B, Ott E, et al. Synchronization in networks of networks: the onset of coherent collective behavior in systems of interacting populations of heterogeneous oscillators[J].Phys Rev E, 2008, 77(3), 036107. [69] Zhang X Y, Boccaletti S, Guan S G, et al. Explosive synchronization in adaptive and multilayer networks[J].Phys Rev Lett, 2015, 114, 038705. [70] Saumell-Mendiola A, Serrano M, Bogun M. Epidemic spreading on interconnected networks[J].Phys Rev E, 2012, 86: 026106. [71] Dickison M, Havlin S, Stanley H E. Epidemics on interconnected networks[J].Phys Rev E, 2012, 85: 066109. [72] Wang H, Li Q, D’Agostino G, et al. Effect of the interconnected network structure on the epidemic threshold[J].Phys Rev E, 2013, 88(2): 022801. [73] Buono C, Alvarez-Zuzek L G, Macri P A, et al. Epidemics in partially overlapped multiplex networks[J].PloS ONE, 2014, 9(3): e92200. [74] Zhao D, Wang L, Li S, et al. Immunization of epidemics in multiplex networks[J].PLoS ONE, 2014, 9(11): e112018. [75] Elvis H W, Wang X W, Xu C, et al. Suppressed epidemics in multi-relational networks[DB/OL].[2015-08-06].http://journals.aps.org/pre/abstract/10.1103/Phys Rev E.92.022812. [76] 李睿琪, 唐明, 许伯铭. 多关系网络上的流行病传播动力学研究[J].物理学报, 2013, 62(16): 168903-168903. Li Ruiqi, Tang Ming, XU Boming. Epidemic spreading on multi-relational networks[J].Acta Phys Sin, 2013, 62(16): 168903. [77] Brummitt C D, Lee K M, Goh K I. Multiplexity-facilitated cascades in networks[J].Phys Rev E, 2012, 85:045102(R). [78] Yagan O, Gligor V. Analysis of complex contagions in random multiplex networks[J].Phys Rev E, 2012, 86(3):036103. [79] Cozzo E, Banos R A, Meloni S, et al. Contact-based social contagion in multiplex networks[J].Phys Rev E, 2013, 88(5): 050801. [80] Lee K M, Brummitt C D, Goh K L. Threshold cascades with response heterogeneity in multiplex networks[J].Phys Rev E, 2014, 90:062816. [81] Bauch C T, Galvani A P. Social factors in epidemiology[J].Science, 2013, 342:47-49. [82] Granell C, Gmez S, Arenas A. Competing spreading processes on multiplex networks: awareness and epidemics[J].Phys Rev E, 2014, 90: 012808. [83] Guo Q T, Jiang X, Lei Y J, et al. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks[J].Phys Rev E, 2015, 91: 012822. [84] Massaro E, Bagnoli F. Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method[J].Phys Rev E, 2014, 90: 052817. [85] Fortunato S. Community detection in graphs[J].Phys Rep, 2010, 486: 75-174. [86] Rogers E. The Diffusion of Innovations[M].fifth ed. New York: Free Press, 1995. [87] Newman M E J. Networks: an Introduction[M].Oxford: Oxford University Press, 2010. [88] Newman M E J. The structure and function of complex networks[J].SIAM Rev, 2003, 45:167-256. [89] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J].Nat Phys, 2010, 6:888-893. [90] Aral S, Walker D. Identifying influential and susceptible members of social networks[J].Science, 2012, 337:337-341. [91] Domenico M D, Solé-Ribalta A, Omodei E, et al. Ranking in interconnected multilayer networks reveals versatile nodes[J].Nat Com Mun, 2015, 6:6868. [92] Lokhov A Y, Mézard M, Ohta H, et al. Inferring the origin of an epidemic with a dynamic message-passing algorithm[J].Phys Rev E, 2014, 90: 012801. [93] 方锦清,唐明,面临NON前沿课题的挑战与网络传播的若干研究进展,2015第11届中国网络科学论坛大会报告[R].上海:上海大学,2015. Fang Jinqing, Tang Ming. Facing the challenge of NON frontier subject and the progress of spreading dynamics on network(in Chinese) . The 11 th network science conference of China in 2015[R].Shanghai:University of Shanghai,2015. [94] Fang J Q,Tang M. Network Science Faces the Challenge and Opportunity: Exploring "network of networks" and its unified theoretical framework[J],to be published, 2015. [95] 方锦清,探索超网络金字塔,超图与超网络专题研讨会[R].西宁,2015. Fang Jinqing. The workshop of exploring the super network pyramid, hypergraph and super network(in Chinese)[R]. Xining,2015