Abstract:A voice encryption algorithm based on chaotic sequences and dynamic Joseph rings is proposed. The digitized voice data is used as input to the SHA-256 algorithm to generate a Hash value. The dynamic key and the external input key are combined to generate the initial value of the chaotic system, and the chaotic sequence key stream is generated by the system iteration. The chaotic sequence key stream is used to replace the step size parameter of the Joseph ring. The dynamic Joseph ring with variable step size is used to generate a scrambling matrix. The scrambled data and the chaotic sequence key stream are used for XOR operation to realize the diffusion encryption of voice information. The numerical simulation and security analysis verified the feasibility and security of the voice encryption algorithm.
[1] YE X, WANG X, GAO S, et al. A new chaotic circuit with multiple memristors and its application in image encryption[J]. Nonlinear Dyna-mics, 2020, 99(2):1489-1506. [2] AN X, JIANG M, DENG W, et al. A novel dual memristor hyperchaotic system and its application for secure communication based on three-fold function projection synchronization[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34(2): e2825. [3] LUO H L, DING D W, YANG Z L. Coexisting behaviors of chaotic system with tri-stable locally active memristor and its application in color image encryption[J]. The European Physical Journal Plus, 2022, 137(5): 1-22. [4] REN L, MOU J, BANERJEE S, et al. A hyperchaotic map with a new discrete memristor model: design, dynamical analysis, implementation and application[J]. Chaos, Solitons & Fractals, 2023, 167: 113024. [5] LIANG B, HU C, TIAN Z, et al. A 3D chaotic system with multi-transient behavior and its application in image encryption[J]. Physica A: Statistical Mechanics and Its Applications. 2023, 616: 128624. [6] XU S, WANG X, YE X. A new fractional-order chaos system of Hopfield neural network and its application in image encryption[J]. Chaos, Solitons & Fractals, 2022,157:111889. [7] 底晓强, 王英政, 李锦青,等. 基于量子细胞神经网络超混沌的视频加密方法[J].吉林大学学报(工学版), 2018, 48(3): 919-928. DI X Q, WANG Y Z, LI J Q, et al. Video encryption method based on hyperchaos of quantum cellular neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018,48(3):919-928. [8] LONe M A, QURESHI S. Encryption scheme for RGB images using chaos and affine hill cipher technique[J]. Nonlinear Dynamics, 2023, 111(6): 5919-5939. [9] ZHANG J, GUO Y, XU L, et al. Hyperchaotic circuit design based on memristor and its application in image encryption[J]. Microelectronic Engineering, 2022, 265: 111872. [10] 刘思聪, 李春彪, 李泳新. 基于指数-余弦离散混沌映射的图像加密算法研究[J].电子与信息学报, 2022, 44(5):1754-1762. LIU S C, LI C B, LI Y X. A novel image encryption algorithm based on exponent-cosine chaotic mapping[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1754-1762. [11] 闫少辉, 顾斌贤, 宋震龙, 等. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 44-51. YAN S H, GU B X, SONG Z L, et al. Image encryption algorithm based on a four-dimensional memristor hyperchaotic system[J]. Complex Systems and Complexity Science, 2023, 20(2): 43-51. [12] CHU R, ZHANG S F, MOU J. A multi-image compression and encryption scheme based on fractional chaotic map[J]. Physica Scripta, 2023, 98(7): 075213. [13] VAIDYANATHAN S, SAMBAs A, KACAR S, et al. A new finance chaotic system, its electronic circuit realization, passivity-based synchronization and an application to voice encryption[J]. Nonlinear Engineering, 2019,8(1):193-205. [14] KAUR G, SINGH K, GILL H S. Chaos-based joint speech encryption scheme using SHA-1[J]. Multimedia Tools and Applications, 2021, 80(7): 10927-10947. [15] BONNY T, NASSAN W A, BABA A. Voice encryption using a unified hyper-chaotic system[J]. Multimedia Tools and Applications, 2023, 82(1): 1067-1085. [16] ELSADANY A A, HUSSEIN S, AL-KHEDHAIRI A, et al. On dynamics of 4-D blinking chaotic system and voice encryption application[J]. Alexandria Engineering Journa, 2023, 70: 701-718. [17] 张秋余, 宋宇杰. 基于改进Henon映射和超混沌的双重语音加密算法[J].电信科学, 2021, 37(12):11-24. ZHANG Q Y, SONG Y J. A dual speech encryption algorithm based on improved Henon mapping and hyperchaotic[J]. Telecommunications Science, 2021, 37(12): 11-24. [18] SATHIYAMURTHI P, RAMAKRISHNAN S. Speech encryption algorithm using FFT and 3D-Lorenz-logistic chaotic map[J]. Multimedia Tools and Applications, 2020, 79(25): 17817-17835. [19] 徐丽云, 闫涛, 钱宇华. 基于级联混沌系统的分数域语音加密算法[J].计算机应用,2021,41(9):2623-2630. XU L Y, YAN T, QIAN Y H. Audio encryption algorithm in fractional domain based on cascaded chaotic system[J]. Journal of Computer Applications, 2021, 41(9): 2623-2630. [20] 金建国, 陈晨, 魏明军, 等.基于混沌调制DFRFT旋转因子的语音加密[J]. 计算机工程,2012,38(12):95-98. JIN J G, CHEN C, WEI M J, et al. Audio encryption based on chaotic modulation dfrft rotation factor[J]. Computer Engineering, 2012, 38(12): 95-98. [21] 冯伟, 张靖, 秦振涛, 等. 基于变步长约瑟夫遍历和DNA动态编码的图像加密算法的安全性分析[J].电子与信息学报, 2022,44(10):3635-3642. FENG W, ZHANG J, QIN Z T, et al. Cryptanalysis of image encryption algorithm based on variable step length josephus traversing and dna dynamic encoding[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3635-3642. [22] CHEN R, LI X, TENG L, et al. Selective region medical image encryption algorithm based on cascade chaos and two-dimensional Joseph traversal[J]. Physica Scripta, 2023, 98(3): 035227. [23] WANG L, CAO Y, JAHANSHAHI H, et al. Color image encryption algorithm based on double layer Josephus scramble and laser chaotic system[J]. Optik, 2023, 275: 170590. [24] WANG R, DENG G Q, DUAN X F. An image encryption scheme based on double chaotic cyclic shift and Josephus problem[J]. Journal of Information Security and Applications, 2021, 58: 102699. [25] WANG M, WANG X, WANG C, et al. Color image encryption based on 2D enhanced hyperchaotic logistic-sine map and two-way Josephus traversing[J]. Digital Signal Processing, 2022, 132: 103818. [26] XIE H, GAO Y, ZHANG H. An image encryption algorithm based on novel block scrambling scheme and Josephus sequence generator[J]. Multimedia Tools and Applications, 2022,82(11): 16431-16453.