Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (3): 73-81    DOI: 10.13306/j.1672-3813.2025.03.010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
广义Lorenz-Stenflo混沌系统的动力学分析与全局指数同步
张付臣1, 陈松1, 周雯静1, 肖敏2
1.重庆工商大学 a.数学与统计学院;b.统计智能计算与监测重庆市重点实验室,重庆 400067;
2.南京邮电大学 a.自动化学院;b.人工智能学院,南京 210023
Dynamical Analysis and Global Exponential Synchronization of the Generalized Lorenz-Stenflo Chaotic System
ZHANG Fuchen1, CHEN Song1, ZHOU Wenjing1, XIAO Min2
1. a. School of Mathematics and Statistics; b. Chongqing Key Laboratory of Statistical and Intelligent Computing and Monitoring, Chongqing Technology and Business University, Chongqing 400067, China;
2. a. College of Automation; b. College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
全文: PDF(2658 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为发现更多的新混沌系统,在Lorenz-Stenflo混沌系统的基础上通过添加扰动参数构建了广义Lorenz-Stenflo混沌系统。通过耗散性、平衡点及其稳定性、分岔图和Lyapunov指数谱分析了该系统的基本混沌动力学特征。基于Lyapunov稳定性理论给出了系统全局指数吸引集的解析表达式;利用系统解有界性的估计式对两个广义Lorenz-Stenflo系统添加线性反馈控制使达到全局指数同步;最后对同步过程进行数值仿真,计算机仿真结果证实了全局指数同步的理论可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张付臣
陈松
周雯静
肖敏
关键词 Lorenz-Stenflo混沌系统稳定性分岔全局指数吸引集全局指数同步    
Abstract:In order to discover new chaotic systems, the generalized Lorenz-Stenflo chaotic system is constructed based on the Lorenz-Stenflo chaotic system by adding the disturbance parameters. The basic chaotic characteristics of this system are analyzed by means of the dissipation, equilibrium point and stability, bifurcation diagram and Lyapunov exponential spectrum. Based on Lyapunov stability theory, the analytical expression of the global exponential attractive set of the system is given. The global exponential synchronization is achieved by adding linear feedback control to two generalized Lorenz-Stenflo systems by using the estimator of system solution boundness. Finally, the numerical simulation of the synchronization process is carried out, and the computer simulation results confirm the theoretical feasibility of global exponential synchronization.
Key wordsLorenz-Stenflo chaotic system    stability    bifurcation    global exponential attractive set    global exponential synchronization
收稿日期: 2023-09-05      出版日期: 2025-10-09
ZTFLH:  O415.5  
  O19  
基金资助:重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1548);“成渝地区双城经济圈建设”科技创新专项项目(KJCX2020037);重庆市教委科技项目(KJQN202100813,KJQN201800818);国家自然科学基金项目(62073172);江苏省自然科学基金(BK20221329);重庆市社会经济与应用统计重点实验室项目(ZDPTTD201909);重庆工商大学校内科技项目-青年项目(1952012);重庆工商大学研究生创新项目(yjscxx2024-284-55);重庆工商大学研究生教育教学改革项目(24YJG307);重庆市高等教育教学改革研究项目(253156)
作者简介: 张付臣(1983-),男,山东临沂人,博士,教授,主要研究方向为混沌系统稳定性分析与控制。
引用本文:   
张付臣, 陈松, 周雯静, 肖敏. 广义Lorenz-Stenflo混沌系统的动力学分析与全局指数同步[J]. 复杂系统与复杂性科学, 2025, 22(3): 73-81.
ZHANG Fuchen, CHEN Song, ZHOU Wenjing, XIAO Min. Dynamical Analysis and Global Exponential Synchronization of the Generalized Lorenz-Stenflo Chaotic System[J]. Complex Systems and Complexity Science, 2025, 22(3): 73-81.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.03.010      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I3/73
[1] LORENZ E N. Deterministic non-periods flows[J]. Journal of the Atmospheric Science, 1963, 20, 130-141.
[2] CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466.
[3] LU J H, CHEN G R, CHENG D Z, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12(12): 2917-2926.
[4] ROSSLER O E. An equation for hyperchaos[J]. Physics Letters A, 1979, 71(2/3): 155-157
[5] 陈关荣, 吕金虎. Lorenz 系统族的动力学分析、控制与同步[M]. 北京: 科学出版社, 2003: 2-19.
[6] 韩秀萍, 陆君安. 从环状网络到链状网络同步能力的变化[J]. 中国科学(E辑: 信息科学), 2007,37(6): 748-756.
HAN X P, LU J N. Change of synchronization capability from ring network to chain network[J]. Science in China (Series E: Information Sciences), 2007,37(6): 748-756.
[7] HIROKAZU F, TOMOJI Y. Stability theory of synchronized motion in coupled-oscillator systems[J]. Progress of Theoretical Physics, 1983, 69(1): 32-47.
[8] PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
[9] VALENCIA-PONCE M A, CASTANEDA-AVINA P R, TLELO-CUAUTLE E, et al. CMOS OTA-based filters for designing fractional-order chaotic oscillators[J]. Fractal and Fractional, 2021, 5(3): 122-137.
[10] 祝晓静, 李科赞, 丁勇. 相继投影同步及其在保密通信中的应用[J]. 复杂系统与复杂性科学, 2022, 19(1): 27-33.
ZHU X J, LI K Z, DING Y. Successive Projective synchronization and its application in secure communication[J]. Complex Systems and Complexity Science, 2022, 19(1): 27-33.
[11] YANG X S, CAO J D, YANG Z C. Synchronization of coupled reaction-diffusion neural neworks with time-varying delays via pinning-impulsive controller[J]. SIAM Journal on Control and Optimization, 2013, 51(5): 3486-3510.
[12] 祝大伟, 涂俐兰. 随机扰动下Lorenz混沌系统的自适应同步与参数识别[J]. 物理学报, 2013, 62(5): 106-111.
ZHU D W, TU L L. Adaptive synchronization and parameter identification of Lorenz chaotic systems with random perturbations[J]. Acta Physica Sinica, 2013, 62(5): 106-111.
[13] 王铁邦, 曹天德, 雷勇,等. Lorenz系统的混沌同步[J]. 南京师大学报(自然科学版), 2009, 32(1): 57-61.
WANG T B, CAO T D, LEI Y, et al. Chaotic synchronization of Lorenz system[J]. Journal of Nanjing Normal University (Natural Science Edition), 2009, 32(1): 57-61.
[14] 牛玉俊, 徐伟, 戎海武,等. 随机脉冲微分方程的p阶矩稳定性和参激白噪声作用下Lorenz系统的脉冲同步[J]. 物理学报, 2009, 58(5): 2983-2988.
NIU Y J, XU W, RONG H W, et al. P-order moment stability of random impulsive differential equations and pulse synchronization of Lorenz system under parametric white noise[J]. Acta Physica Sinica, 2009, 58(5): 2983-2988.
[15] SOLIS-PÉREZ J E, GÓMEZ-AGUILAR J F, HERNÁNDEZ-PÉREZ J A, et al. Dynamical analysis of the M-Complex Lorenz system and its anti-synchronization via M-Sliding mode control[J]. Results in Physics, 2022, 43: 106080.
[16] 张芳芳, 刘树堂, 余卫勇. 时滞复Lorenz混沌系统特性及其自时滞同步[J]. 物理学报, 2013, 62(22): 64-72.
ZHANG F F, LIU S T, YU W Y. Characteristics and self-delay synchronization of complex Lorenz chaotic systems with delay[J]. Acta Physica Sinica, 2013, 62(22): 64-72.
[17] LIN L X. Projective synchronization of two coupled Lorenz chaotic systems in predefined time[J]. International Journal of Dynamics and Control, 2022, 10(3): 879-889.
[18] 廖晓昕. Lorenz混沌族中若干数学问题新研究[M]. 武汉: 华中科技大学出版社, 2017: 1-16, 74-79.
[19] LIN D, ZHANG F C, LIU J M. Symbolic dynamics-based error analysis on chaos synchronization via noisy channels[J]. Physical Review E, 2014, 90(1): 012908.
[20] 时帅帅, 刘立才, 杜传红. 新混沌系统分析及其同步控制[J]. 工程数学学报, 2022, 39(5): 709-724.
SHI S S, LIU L C, DU C H. Analysis and synchronization control of new chaotic systems[J]. Chinese Journal of Engineering Mathematics, 2022, 39(5): 709-724.
[21] 廖晓昕. 论Lorenz混沌系统全局吸引集和正向不变集的新结果及对混沌控制与同步的应用[J]. 中国科学(E辑: 信息科学), 2004, 34(12): 1404-1419.
LIAO X X. New Results on global attractive set and positive invariant set of Lorenz chaotic systems and its applications to chaos control and synchronization[J]. Science in China (Series E: Information Sciences), 2004, 34(12): 1404-1419.
[22] 廖晓昕, 罗海庚, 傅予力,等. 论Lorenz系统族的全局指数吸引集和正向不变集[J]. 中国科学(E辑: 信息科学), 2007, 37(6): 757-769.
LIAO X X, LUO H G, FU Y L, et al. On the global exponential attractive set and positive invariant Set of Lorenz family of systems[J]. Science in China (Series E: Information Sciences), 2007, 37(6): 757-769.
[23] 付文芳, 江明辉. 一个新混沌系统的全局指数吸引集及反馈同步[J]. 武汉理工大学学报, 2008(7): 103-106.
FU W F, JIANG M H. Global exponential Attraction set and feedback synchronization of a new chaotic system[J]. Journal of Wuhan University of Technology, 2008(7): 103-106.
[24] 刘莹, 王贺元, 陈荟颖. 强迫布鲁塞尔振子动力学行为和全局指数同步的数值仿真[J]. 动力学与控制学报, 2017, 15(5): 423-429.
LIU Y, WANG H Y, CHEN H Y. Numerical simulation of forced dynamic behavior of Brussels oscillator and global exponential synchronization[J]. Journal of Dynamics and Control, 2017, 15(5): 423-429.
[25] ZHANG F C, LIAO X F, ZHANG G Y. On the global boundedness of the Lü system[J]. Applied Mathematics and Computation, 2016, 284: 332-339.
[26] ZHANG F C, LIAO X F, MU C L, et al. On global boundedness of the Chen system[J]. Discrete and Continuous Dynamical Systems-Series B, 2017, 22(4): 1673-1681.
[27] QIN W X, CHEN G R. On the boundedness of solutions of the Chen system[J]. Journal of Mathematical Analysis and Applications, 2007, 329(1): 445-451.
[28] ZHANG F C, LIAO X F, ZHANG G Y, et al. Dynamical behaviors of a generalized Lorenz family[J]. Discrete and Continuous Dynamical Systems-Series B, 2017, 22(10): 3707-3720.
[29] ZHANG F C, LIAO X F, ZHANG G Y, et al. Dynamical analysis of the generalized Lorenz systems[J]. Journal of Dynamical and Control Systems, 2017, 23(2): 349-362.
[30] ZHANG X, CHEN G R. Boundedness of the complex Chen system[J]. Discrete and Continuous Dynamical Systems-Series B, 2023, 27(10): 5673-5700.
[31] CHIEN F S, INC M, YOSEFZADE H, et al. Predicting the chaos and solution bounds in a complex dynamical system[J]. Chaos, Solitons and Fractals, 2021, 153: 111474.
[32] STENFLO L. Generalized Lorenz equations for acoustic-gravity waves in the atmosphere[J]. Physica Scripta, 1996, 53(1): 83-84.
[33] 王贺元, 白晨. 四模Lorenz-Stenflo系统动力学行为分析及其数值仿真[J]. 沈阳师范大学学报(自然科学版), 2022, 40(5): 421-425.
WANG H Y, BAI C. Dynamic behavior analysis and numerical simulation of four-mode lorenz-stenflo system[J]. Journal of Shenyang Normal University (Natural Science Edition), 2022, 40(5): 421-425.
[1] 陈秀锋, 赵凤阳, 王成鑫, 肖玉杰, 谷可鑫. 考虑期望视觉角的车辆跟驰建模与分析[J]. 复杂系统与复杂性科学, 2025, 22(3): 122-128.
[2] 周群利, 宋全军, 潘宏青. 一个新的混沌系统分析及同步控制[J]. 复杂系统与复杂性科学, 2025, 22(3): 82-89.
[3] 李平, 夏磊, 范义刚, 钱锦. 五维磁控忆阻器混沌系统及其图像加密应用[J]. 复杂系统与复杂性科学, 2025, 22(3): 42-48.
[4] 周宣欣, 吴亚勇, 蒋国平. 两类耦合超图网络状态估计研究[J]. 复杂系统与复杂性科学, 2025, 22(2): 90-96.
[5] 周雯静, 张付臣. 新非线性混沌系统动力学分析及仿真[J]. 复杂系统与复杂性科学, 2025, 22(1): 77-82.
[6] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
[7] 翟持. 探析Belousov-Zhabotinsky反应的复杂非线性特性[J]. 复杂系统与复杂性科学, 2024, 21(1): 132-138.
[8] 彭巍, 胡远航, 龚壮辉. 生态视角的复杂产品协同设计网络稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 88-94.
[9] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[10] 陆云翔, 肖敏, 陶斌斌, 丁洁, 陈实. 独立非交叉传播的分数阶生物竞争网络Hopf分岔[J]. 复杂系统与复杂性科学, 2022, 19(1): 1-11.
[11] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[12] 卢冬冬, 吴洁, 刘鹏, 盛永祥. 网络稳定性研究——以AngularJS为例[J]. 复杂系统与复杂性科学, 2020, 17(3): 38-46.
[13] 董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
[14] 朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
[15] 陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed