Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 26-34    DOI: 10.13306/j.1672-3813.2016.04.004
  本期目录 | 过刊浏览 | 高级检索 |
多元偏好、社团结构与网络合作涌现仿真研究
范如国, 崔迎迎, 张应青
武汉大学经济与管理学院,武汉 430072
Simulation Study of Multi-Preferences and Community Structure on the Emergence of Cooperation
FAN Ruguo, CUI Yingying, ZHANG Yingqing
Economics and Management School of Wuhan University, Wuhan 430072, China
全文: PDF(1364 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在综合考虑复杂社会网络高集聚性、无标度性以及“社团结构”的基础上,依据“囚徒困境”博弈,建立了基于多元偏好的复杂社会网络演化博弈模型,创新性地将节点影响力运用于博弈策略的更新规则中,并利用Matlab平台进行仿真。从宏观特征和微观结构两方面,通过对照仿真实验,系统研究了多元偏好、社会网络的“社团结构”以及外部连接对合作涌现的影响及其作用机理。研究发现,多元偏好特征下社团结构特征影响主体的异质性期望水平;“社团结构”可以促进合作行为的涌现;社团外部影响力对合作涌现的影响与社团规模有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范如国
崔迎迎
张应青
关键词 社会网络社团结构外部连接合作演化    
Abstract:Considering the high concentration, scale-free and “community structure” of social networks, according to “Prisoner's Dilemma” game, we establish an evolutionary game model for complex social networks based on multi-preferences, apply the node influence to the rule of game strategy update innovatively, and use Matlab platform to simulate. Besides, we analyze the multi-preferences, “community structure” and inter-community links to reveal the influence and inherent mechanism of cooperative emergence in social networks systematically from both macroscopic and microcosmic perspective through contrast simulation experiments. It is shown that community structure characteristic under multi-preferences affects the heterogeneous expectation level of agents; “community structure” can promote the emergence of cooperation; the influence of inter-community links to cooperative emergence has a relation with community scale.
Key wordssocial network    community structure    inter-community link    cooperation evolution
收稿日期: 2015-02-13      出版日期: 2025-02-25
ZTFLH:  C912.2  
  F224.32  
基金资助:国家自然科学基金(71271159);国家社科基金重大项目(14ZDA062);教育部人文社会科学研究专项任务项目(14JDGC012)
作者简介: 范如国(1965-),男,湖北潜江人,博士,教授,主要研究方向为能源经济、复杂系统管理。
引用本文:   
范如国, 崔迎迎, 张应青. 多元偏好、社团结构与网络合作涌现仿真研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 26-34.
FAN Ruguo, CUI Yingying, ZHANG Yingqing. Simulation Study of Multi-Preferences and Community Structure on the Emergence of Cooperation[J]. Complex Systems and Complexity Science, 2016, 13(4): 26-34.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.004      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/26
[1] 周涛,张子柯,陈关荣,等.复杂网络研究的机遇与挑战[J].电子科技大学学报, 2014,43(1):1-5.
Zhou Tao,Zhang Zike,Chen Guanrong,et al.The opportunities and challenges of complex networks research[J].Journal of University of Electronic Science and Technology of China, 2014,43(1):1-5.
[2] 荣智海,吴枝喜,王文旭.共演博弈下网络合作动力学研究进展[J].电子科技大学学报, 2013,42(1):10-22.
Rong Zhihai,Wu Zhixi,Wang Wenxu.Research on the networked cooperative dynamicsof coevolutionary games[J].Journal of University of Electronic Science and Technology of China, 2013,42(1):10-22.
[3] Nowak M A, May R M. Evolutionary games and spatial chaos[J].Nature, 1992,359(6398): 826-829.
[4] Watts D J, Strogatz S H. Collective dynamics of small-world networks[J].Nature, 1998, 393(6684): 440-442.
[5] Barabasi A L, Albert R.Emergence of scaling in random networks[J].Science, 1999, 286(5439): 509-512.
[6] Szabó G R, Vukov J, Szolnoki A.Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices[J].Physical Review E, 2005, 72(4): 047107.
[7] Assenza S, Gómez-Gardees J, Latora V. Enhancement of cooperation in highly clustered scale-free networks[J].Physical Review E, 2008, 78(1): 017101.
[8] Yang H X, Gao K, Han X P, et al. Evolutionary snowdrift game on heterogeneous Newman-Watts small-world network[J].Chinese Physics B, 2008, 17(8): 2759.
[9] Wang Z, Wang L, Perc M. Degree mixing in multilayer networks impedes the evolution of cooperation[J].Phys Rev E, 2014, 89(5): 052813.
[10] Wang Z, Szolnoki A, Perc M. Interdependent network reciprocity in evolutionary games[J].Nature Scientific Reports, 2013, 3(1183):1-12.
[11] 李晓佳,张鹏,狄增如,等.复杂网络中的社团结构[J].复杂系统与复杂性科学,2008,5(3):19-42.
Li Xiaojia,Zhang Peng,Di Zengru,etal.Community structure in complex networks[J].Complex Systems and Complexity Science, 2008,5(3):19-42.
[12] Newman M E J. Communities, modules and large-scale structure in networks[J].Nature Physics, 2012, 8(1): 25-31.
[13] Wu J, Hou Y, Jiao L, et al. Community structure inhibits cooperation in the spatial prisoner’s dilemma[J].Physica A: Statistical Mechanics and its Applications, 2014, 412: 169-179.
[14] Wu Z X, Rong Z, Yang H X. Community structure benefits the fixation of cooperation under strong selection[J].Phys Rev E,2015,91(1):012802.
[15] 范如国. 复杂网络结构范型下的社会治理协同创新[J].中国社会科学,2014,(4):98-120.
Fan Ruoguo.Collaborative innovation in social governance in a complex network structural paradigm[J].Social Sciences in China,2014,(4):98-120.
[16] 汪大明. 复杂网络社团模型与结构研究[D].长沙:国防科学技术大学,2010.
Wang daming.Research on community model and structure of complex networks[D].Changsha:National University of Defense Technology,2010.
[17] Yang H X, Wu Z X,Wang B H. Role of aspiration-induced migration in cooperation[J].Physical Review E, 2010,81(6): 065101.
[18] 胡庆成,尹龑燊,马鹏斐,等.一种新的网络传播中最有影响力的节点发现方法[J].物理学报,2013,62(14):9-19.
Hu Qingcheng,Yin Yanshen,Ma Pengfei,etal.A new approach to identify influential spreaders in complex networks[J].Acta Physica Sinica, 2013,62(14):9-19.
[19] Chen D B,LÜ L Y,Shang M S,etal.Identifying influential nodes in complex networks[J].Physica A:Statistical Mechanics and Its Applications,2012. 391(4): 1777-1787.
[20] Gomez-Gardenes J,Campillo M,Floria L M,et al. Dynamical organization of cooperation in complex topologies[J].Physical Review Letters, 2007, 98(10): 108103.
[21] 尼古拉斯·克里斯塔基斯,詹姆斯·富勒.大连接:社会网络是如何形成的以及对人类现实行为的影响[M].北京:中国人民大学出版社, 2013:39.
[22] Chen X J,Fu F,Wang L.Prisoner's Dilemma on community networks[J].Physica A: Statistical Mechanics and Its Applications, 2007,378(2): 512-518.
[23] Li C, Maini P K. An evolving network model with community structure[J].Journal of Physics A:Mathematical and General, 2005,38(45): 9741-9749.
[24] Marcoux M,Lusseau D.Network modularity promotes cooperation[J].Journal of Theoretical Biology, 2013,324: 103-108.
[1] 高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
[2] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[3] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[4] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[5] 李培哲, 菅利荣. 网络结构、知识基础与企业创新绩效[J]. 复杂系统与复杂性科学, 2022, 19(2): 31-38.
[6] 全吉, 周亚文, 王先甲. 社会困境博弈中群体合作行为演化研究综述[J]. 复杂系统与复杂性科学, 2020, 17(1): 1-14.
[7] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[8] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[9] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
[10] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[11] 孙奕菲, 姚若侠, 焦李成. 基于Memetic算法和关联学习的社会网络聚类分析[J]. 复杂系统与复杂性科学, 2017, 14(2): 89-96.
[12] 贾珺, 胡晓峰, 贺筱媛. 基于节点动态连接度的网络社团划分算法[J]. 复杂系统与复杂性科学, 2016, 13(4): 56-61.
[13] 赵小薇, 夏昊翔, 张潇. 噪音水平和交互频次对策略演化的影响[J]. 复杂系统与复杂性科学, 2016, 13(4): 96-101.
[14] 肖宇, 韩景倜. 异质阈值决策规则下的复杂网络扩散[J]. 复杂系统与复杂性科学, 2016, 13(3): 47-57.
[15] 周静, 袁瑛, 涂平. 中国电影圈主要导演和演员合作网络的结构特征分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed