Abstract:Synergy is ubiquitous in contagion processes on complex networks. Most existing studies have been focused on the continuous models, yet the discrete models received less attention. Motivated by this, we employ the generating function method to study a two-state (active or inactive) threshold model on complex networks with different synergistic effects. Compared to the case without synergy, the positive synergy enhances prevalence and weakens systematic robustness. The negative synergy, however, plays an opposite role. These effects are strengthened when the network is heterogeneous.
卢炯, 许新建. 协同对社会传播的影响[J]. 复杂系统与复杂性科学, 2022, 19(3): 14-19.
LU Jiong, XU Xinjian. SynergisticEffects in Social Contagions on Networks. Complex Systems and Complexity Science, 2022, 19(3): 14-19.
[1] 李翔, 刘宗华, 汪秉宏. 网络传播动力学[J]. 复杂系统与复杂性科学, 2010, 7(2/3): 33-37. LI X, LIU Z H, WANG B H. On spreading dynamics on networks[J]. Complex Systems and Complexity Science, 2010, 7(2/3): 33-37. [2] PORTER M A, GLEESON J P. Dynamical Systems on Networks: a Tutorial[M]. Switzerland:Springer, 2016. [3] KEELING M J, ROHANI P. Modeling Infectious Diseases in Humans and Animals[M]. Princeton :Princeton University Press, 2007. [4] AHMED E, AGIZA H N. On modeling epidemics including latency, incubation and variable susceptibility[J]. Physica A, 1998, 253(1-4): 347-352. [5] TAYLOR H M, KARLIN S. An Introduction to Stochastic Modeling[M]. Burlington: Academic Press, 1984. [6] 刘宗华, 阮中远, 唐明. 复杂网络上的流行病传播[M]. 北京: 高等教育出版社, 2021. [7] GÓMEZ S, ARENAS, A, BORGE-HOLTHOEFER J, et al. Discrete-time Markov chain approach to contact-based disease spreading in complex networks[J]. EPL, 2010, 89(3): 38009. [8] WATTS D J. A simple model of global cascades on complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5766-5771. [9] SCHELLING T C. Hockey helmets, concealed weapons, and daylight saving[J]. Journal of Conflict Resolution, 1973, 17(3): 381-428. [10] 李小林, 许润杰, 娄洁等. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18. LI X L, XU R J, LOU J, et al. Social contagions on duplex networks[J]. Complex Systems and Complexity Science, 2019, 16(4): 13-18. [11] GRANOVETTER M. Threshold models of collective behavior[J]. American Journal of Sociology, 1978, 83(6): 1420-1443. [12] MORRIS S. Contagion[J]. Review of Economic Studies, 2000, 67: 57-78. [13] GLEESON J P. Cascades on correlated and modular random networks[J]. Physical Review E, 2008, 77(4): 046117. [14] COUPECHOUX E, LELARGE M. How clustering affects epidemics in random networks[J]. Advances in Applied Probability, 2014, 46: 985-1008. [15] BACKLUND V P, SARAMÄKI J, PAN R K. Effects of temporal correlations on cascades[J]. Physical Review E, 2014, 89(6): 062815. [16] 李小林, 袁梦, 王鹏等. 复杂网络中权重对舆情传播的影响[J]. 应用数学与计算数学学报, 2018, 32: 588-597 LI X L, YUAN M, WANG P, et al. Impact of weights on opinion propagation in complex networks[J]. Communication on Applied Mathematics and Computation, 2018, 32: 588-597. [17] MCCULLEN N, RUCKLIDGE A, BALE C, et al. Multiparameter models of innovation diffusion on complex networks[J]. SIAM Journal on Applied Dynamical Systems, 2013, 12(1): 515-532. [18] MELNIK S, WARD J A, GLEESON J P, et al. Multi-stage complex contagions[J]. Chaos, 2013, 23(1): 013124. [19] WANG W, TANG M, ZHANG H F, et al. Dynamics of social contagions with memory of nonredundant information[J]. Physical Review E, 2015, 92(1): 012820. [20] RUAN Z, IÑGUEZ G, KARSAI M, et al. Kinetics of social contagion[J]. Physical Review Letters, 2015, 115(21): 218702. [21] PÉREZ-RECHE F J, LUDLAM J J, TARASKIN S N, et al. Synergy in spreading processes: from exploitative to explorative foraging strategies[J]. Physical Review Letters, 2011, 106(21): 218701. [22] BRODWE-RODGERS D, PÉREZ-RECHE F J, TARASKIN S N. Effects of local and global network connectivity on synergistic epidemics[J]. Physical Review E, 2015, 92(6): 062814. [23] GÓMEZ-GARDEÑES J, LOTERO L, TARASKIN S N, et al. Explosive contagion in networks[J]. Scientific Reports, 2016, 6(1):19767. [24] LIU Q H, WANG W, TANG M, et al. Explosive spreading on complex networks: the role of synergy[J]. Physical Review E, 2017, 95(4): 042320. [25] TARASKIN S N, PÉREZ-RECHE F J. Bifurcations in synergistic epidemics on random regular graphs[J]. Journal of Physics A: Mathematical and Theoretical, 2019, 52(19): 195101. [26] OGURA M, MEI W, SUGIMOTO K. Synergistic effects in networked epidemic spreading dynamics[J]. IEEE Transactions on Circuits and Systems II, 2020, 67(3): 496-500. [27] JUUL J S, PORTER M A. Synergistic effects in threshold models on networks[J]. Chaos, 2018, 28(1): 013115. [28] ERDÖS P, RÉNYI A. On random graphs[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297. [29] CATANZARO M, BOGUÑÁ M, PASTOR-SATORRAS R. Generation of uncorrelated random scale-free networks[J]. Physical Review E, 2005, 71(2): 027103. [30] ALBERT R, JEONG H, BARABÁSI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382. [31] DO Y S, BAEK S K, ZHU C P, et al. Phase transition in a coevolving network of conformist and contrarian voters[J]. Physical Review E, 2013, 87(1): 012806. [32] YANG H X, HUANG L. Opinion percolation in structured population[J]. Computer Physics Communications, 2015, 192: 124-129.