Fault-tolerant Synchronization Control for Complex Dynamical Networks
CHEN Jiayin1, LIU Guojun2
1. Department of information technology, ChangChun Finance College,ChangChun 130028, China; 2. National Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, ChangChun 130022, China
Abstract:In this paper, we study a class of synchronous control problems called Markov complex systems. First, according to the Lyapunov stability theorem and the linear matrix inequality method, this paper constructs a new augmented closed-loop functional, which considers the state information of the current sample and the previous sample at the same time. Thus, a lower conservative stability criterion for Markov complex systems is obtained. At the same time, a design method of data sampling controller is given. Finally, numerical and simulation examples are established, and the simulation results prove that the method proposed in this paper has obvious advantages over other methods.
[1] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4/5):175-308. [2] EAGLE N, PENTLAND A. Reality mining: sensing complex social systems[J]. Personal & Ubiquitous Computing, 2006, 10(4):255-268. [3] LIU Y, LIU W, OBAID M A, et al. Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays[J]. Neurocomputing, 2016, 177:409-415. [4] PAGANI G A, AIELLO M. The power gridas a complex network: a survey[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(11):2688-2700. [5] ZHANG H T, YU T, SANG J P, et al. Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks[J]. Physica A Statistical Mechanics & Its Applications, 2014, 393(1):590-599. [6] COLMAN E R, RODGERS G J. Complex scale-free networks with tunable power-law exponent and clustering[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(21):5501-5510. [7] ANGULO-GUZMAN S Y, POSADAS-CASTILLO C, DIAZ-ROMERO D A, et al. Chaotic synchronization of regular complex networks with fractional-order oscillators[C].IEEE 2012 20th Mediterranean Conference on Control & Automation. Barcelona, Spain: IEEE, 2012:921-927. [8] WANG J, SU L, SHEN H, et al. Mixed H∞/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay[J]. Journal of the Franklin Institute, 2017,354(3):1302 -1320. [9] WU X, LU H. Projective lag synchronization of the general complex dynamical networks with distinct nodes[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(11):4417-4429. [10] SHEN H, PARK J H, WU Z G, et al. Finite-time H∞ synchronization for complex networks with semi-Markov jump topology[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 24(1-3):40-51. [11] XU M, WANG J L, HUANG Y L, et al. Pinning synchronization of complex dynamical networks with and without time-varying delay[J]. Neurocomputing, 2017, 266:263-273. [12] LI X J, YANG G H. FLS-based adaptive synchronization control of complex dynamical networks with nonlinear couplings and state-dependent uncertainties[J]. IEEE Transactions on Cybernetics, 2016, 46(1):171-180. [13] YANG X, CAO J, LU J. Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(2):371-384 [14] JIN X Z, JU H P. Adaptive sliding-mode insensitive control of a class of non-ideal complex networked systems[J]. Information Sciences, 2014, 274(8):273-285. [15] ZHU J W, YANG G H. Robust H∞ dynamic output feedback synchronization for complex dynamical networks with disturbances[J]. Neurocomputing, 2016, 175:287-292. [16] LI H. Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling[J]. Neurocomputing, 2014, 138(11):78-85. [17] KAO C Y. An IQC approach to robust stability of aperiodic sampled-data systems[J]. IEEE Transactions on Automatic Control, 2016, 61(8):2219-2225. [18] SEURET A, BRIAT C. Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals[J]. Automatica, 2015,55:274-278. [19] ZENG H B, TEO K L, HE Y. A new looped-functional for stability analysis of sampled-data systems[J]. Automatica, 2017,82:328-331. [20] ZENG H B, HE Y, WU M, et al. New results on stability analysis for systems with discrete distributed delay[J]. Automatica, 2015, 60:189-192. [21] ZENG H B, TEO K L, HE Y, et al. Sampled-data synchronization control for chaotic neural networks subject to actuator saturation[J]. Neurocomputing, 2017, 185:1656-1667. [22] FANG M. Synchronization for complex dynamical networks with time delay and discrete-time information[J]. Applied Mathematics & Computation, 2015, 258:1-11. [23] RAKKIYAPPAN R, LATHA V P, Zhu Q, et al. Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators[J]. Nonlinear Analysis Hybrid Systems, 2017, 24:28-44. [24] ZENG D, ZHANG R, ZHONG S, et al. Sampled-data synchronization control for Markovian delayed complex dynamical networks via a novel convex optimization method [J]. Neurocomputing, 2017,266:606-618. [25] SIVARANJIANI K, RAKKIYAPPAN R. Delayed impulsive synchronization of nonlinearly coupled Markovian jumping complex dynamical networks with stochastic perturbations[J]. Nonlinear Dynamics, 2017, 88(3): 1917-1934. [26] LI X, RAKKIYAPPAN R, SAKTHIVEL N. Non-fragile synchronization control for markovian jumping complex dynamical networks with probabilistic time-varying coupling delays[J]. Asian Journal of Control, 2015, 17(5):1678-1695. [27] RAKKIYAPPAN, S. Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays[J]. Chinese Physics B, 2014, 23(2):49-63. [28] SIVARANJANI K, RAKKIYAPPAN R. Pinning sampled-data synchronization of complex dynamical networks with Markovian jumping and mixed delays using multiple integral approach[J]. Complexity, 2016, 21(S1):622-632. [29] XIE Q, SI G, ZHANG Y, et al. Finite-time synchronization and identification of complex delayed networks with Markovian jumping parameters and stochastic perturbations[J]. Chaos Solitons & Fractals, 2016, 86:35-49. [30] WANGX, FANG J A, MAO H, et al. Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control[J]. Nonlinear Dynamics, 2015, 79(1):47-61. [31] XU R, KAO Y, GAO C. Exponential synchronization of delayed Markovian jump complex networks with generally uncertain transition rates[J]. Applied Mathematics and Computation, 2015, 271: 682-693. [32] LIU Y, WANG Z, YUAN Y, et al. Event-triggered partial-nodes-based state estimation for delayed complex networks with bounded distributed delays[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 49(6):1088-1098. [33] HU J B, LU G P, ZHAN L D. Synchronization of fractional chaotic complex networks with distributed delays[J]. Nonlinear Dynamics, 2016, 83(1/2):1101-1108. [34] WANG J, SU L, SHEN H, et al. Mixed H∞,/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay[J]. Journal of the Franklin Institute, 2017, 354(3):1302-1320. [35] WU Z G, SHI P, SU H, et al. Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1796-1807. [36] CHEN Z, SHI K, ZHONG S. New synchronization criteria for complex delayed dynamical networks with sampled-data feedback control.[J]. Isa Transactions, 2016, 63:154-169. [37] LIU X Z, DI Y P, GAO L. Fault-tolerant control of networked control systems with time-varying delay[C]// IEEE International Conference on Control and Automation. Hangzhou, China: IEEE, 2013:750-754. [38] SU L, SHEN H. Fault-tolerant mixed H∞/passive synchronization for delayed chaotic neural networks with sampled-data control[J]. Complexity, 2016, 21(6):246-259. [39] YE D, YANG X, Su L. Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology[J]. Applied Mathematics & Computation, 2017, 312:36-48. [40] WANG C, FAN C, GONG L. Fault tolerant synchronization for a general complex dynamical networkwith random delay[J]. Journal of Harbin of Technology, 2017, 24(1):51-56. [41] SEURET A, GOUAISBAUT F. Wirtinger-based integral inequality: application to time-delay systems[J]. Automatica, 2013, 49(9):2860-2866. [42] ZHANG H, WNG J, WANG Z, et al. Sampled-data synchronization analysis of markovian neural networks with generally incomplete transition rates[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(3):740-752. [43] WU Z G, JU H P, SU H, et al. Exponential synchronization for complex dynamical networks with sampled-data[J]. Journal of the Franklin Institute, 2012, 349(9):2735-2749. [44] WU Z G, SHI P, SU H, et al. Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay[J]. IEEE Transactions on Neural Networks & Learning Systems, 2013, 24(8):1177-1187. [45] SU L, SHEN H. Mixed H∞/passive synchronization for complex dynamical networks with sampled-data control[J]. Applied Mathematics & Computation, 2015, 259:931-942. [46] WANG J, ZHANG H, WANG Z. Sampled-data synchronization for complex networks based on discontinuous LKF and mixed convex combination[J]. Journal of the Franklin Institute, 2015, 352(11):4741-4757. [47] LIU Y, GUO B Z, PARK J H, et al. Non-fragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(1):118-128. [48] YANG H, SHU L, ZHONG S, et al. Extended dissipative exponential synchronization of complex dynamical systems with coupling delay and sampled-data control [J]. Journal of the Franklin Institute, 2016, 353(8):1829-1847. [49] SHAO H Y, HU A H, LIU D. Synchronization of Markovian jumping complex networks with event-triggered control[J]. Chinese Physics B, 2015, 24(9):595-602.