Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 66-73    DOI: 10.13306/j.1672-3813.2022.03.008
  本期目录 | 过刊浏览 | 高级检索 |
基于节点重要性的建筑群火灾蔓延高危建筑的确定方法
张健, 宋志刚, 张雨
昆明理工大学建筑工程学院;昆明 650500
Method of Determining High-risk Buildings for Fire Spread in Densely Built Building Areas Based on Importance of Network Nodes
ZHANG Jian, SONG Zhigang, ZHANG Yu
Faculty of Civil Engineering and mechanics, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(1635 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为识别对建筑群火灾蔓延影响大的重要单体建筑,获得低干预的火灾防控策略,结合多场景建筑群火灾蔓延模拟结果确定蔓延有向图模型;引入适宜的复杂网络节点重要度评价方法分析其重要节点,给出建筑群重要节点改造序列的搜索算法,并以火灾损失期望为评价指标确定改造节点数量;最后,将上述方法应用于某村落建筑群的火灾蔓延防控问题。结果表明:所述方法均能有效确定建筑群火灾蔓延网络节点的重要度排序及重要节点的改造序列,但其效果存在一定差异;仅对少数高危建筑进行改造可大幅降低火灾蔓延风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张健
宋志刚
张雨
关键词 火灾蔓延有向图复杂网络重要节点节点排序防火改造    
Abstract:It is important to obtain low intervention fire prevention and control strategy in dense building areas by detecting the key building that dominate the extent of fire spread. First, established the spread directed graph model based on the multi-scenario building group fire spread simulation results. Then,the complex network method was introduced to study the appropriate sorting method of important nodes. Furthermore, a search algorithm for the reconstruction sequence of important nodes is proposed, and the number of retrofit nodes is determined with fire loss expectation as the evaluation index. Finally, the above method is applied study the issues of fire spread prevention and control in wooden village buildings. The results show that the critical buildings and their fire protection priorities can be accurately determined by the method of this paper,but their effects are different. The risk of fire spread can be significantly reduced through improving the fire protection levels of a relatively small number of buildings.
Key wordsfire spread    directed graph    complex network    important node    node ordering    fire protection
收稿日期: 2021-03-15      出版日期: 2022-10-12
ZTFLH:  TU366  
  N949  
基金资助:云南省重点研发计划项目(202003AC100001)
通讯作者: 宋志刚(1974-),男,云南楚雄人,博士,教授,主要研究方向为工程振动、建筑火灾。   
作者简介: 张健(1987-),男,山东滕州人,博士研究生,主要研究方向为工程抗震、建筑火灾。
引用本文:   
张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
ZHANG Jian, SONG Zhigang, ZHANG Yu. Method of Determining High-risk Buildings for Fire Spread in Densely Built Building Areas Based on Importance of Network Nodes. Complex Systems and Complexity Science, 2022, 19(3): 66-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.008      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/66
[1] 高楠,邬超,白凯,等.中国传统村落空间分异及影响因素[J].陕西师范大学学报(自然科学版), 2020,48(4):97-107.
GAO N, WU C, BAI K, et al. Spatial differentiation and influencing factors of Chinese traditional villages [J]. Journal of Shaanxi Normal University(Natural Science Edition),2020,48(4):97-107.
[2] 保野健治郎,高井広行,难波义郎.ロジスティック曲線による建物火災の延焼速度式に関する基礎的研究[J]. 日本建筑学会论文报告集, 1982,311:137-144.
YASUNO K, TAKAI H, NAMBA Y. A basic study on fire spread formula of houses used by logistic curve[J].Transactions of the Architectural Institute of Japan,1982,311:137-144.
[3] 黄维章,张锁春,雷光耀等. 城市火灾蔓延的数学模型和计算机模拟[J]. 计算物理,1993,10(1): 9-19.
HUANG W Z, ZHANG S C, LEI G Y, et al. A mathematical model of an urban fire-spread and computer simulation [J]. Chinese Journal of Computational Physics, 1993,10(1): 9-19.
[4] NISHINO T, TANAKA T, HUKUGO A. An evaluation method for the urban post-earthquake fire risk considering multiple scenarios of fire spread and evacuation [J]. Fire Safety Journal, 2012,54 (1): 167-180.
[5] OHGAI A, GOHNAI Y, WATANABE K. Cellular automata modeling of fire spread in built-up areas—a tool to aid community-based planning for disaster mitigation[J]. Computers Environment and Urban Systems, 2007, 31(4):441-460.
[6] 孟晓静,杨立中,李健. 基于元胞自动机的城市区域火蔓延概率模型探讨[J]. 中国安全科学学报, 2008,18(2):28-33.
MENG X J, YANG L Z, LI J. Probability model of urban district fire spread based on cellular automata [J]. China Safety Science Journal , 2008,18(2):28-33.
[7] 柳春光,王碧君,潘建伟. 基于元胞自动机的城市地震次生火灾蔓延模型[J]. 自然灾害学报,2010, 19(2):152-157.
LIU C G, WANG B J, Pan J W. Urban post-earthquake fire spread model based on cellular automata [J]. Journal of Natural Disasters, 2010, 19(2):152-157.
[8] HIMOTO K, TAKARA T. Development and validation of a physics-based urban fire spread model [J]. Fire Safety Journal, 2008, 43(7): 477-494.
[9] ZHAO S J, XIONG L Y, REN A Z. A spatial-temporal stochastic simulation of fire, outbreaks following earthquake base on GIS [J]. Journal of Fire Science, 2006, 24(4): 313-339.
[10] 赵思健,任爱珠,熊利亚.城市地震次生火灾研究综述[J].自然灾害学报,2006, 15(2):57-67.
ZHAO S J, Ren A Z, XIONG L Y. Review of studies on urban post-earthquake fires [J]. Journal of Natural Disasters, 2006, 15(2):57-67.
[11] REN A Z, XIE X Y. The simulation of post-earthquake fire-prone area based on GIS [J]. Fire technology, 2011, 47(3):721-749.
[12] 曾翔,杨哲飚,许镇,等.村镇建筑群火灾蔓延模拟与案例[J].清华大学学报(自然科学版),2017,57(12):1331-1337.
ZENG X, YANG Z B, XU Z, et al. Fire spread simulations of building groups in rural areas [J]. Journal of Tsinghua University (Science and Technology), 2017, 57(12):1331-1337.
[13] 张健, 宋志刚,李全旺,等. 木结构建筑群火灾蔓延危险建筑的识别及防火改造效果评价[J].工程力学,2020,37(4): 60-69.
ZHANG J, SONG Z G, LI Q W, et al. Identification and fire protection evaluation of critical buildings to prevent fire spread in densely built wood building areas [J]. Engineering Mechanics, 2020, 37(4): 60-69.
[14] 郭世泽,陆哲明.复杂网络基础理论[M].北京:科学出版社,2012.
[15] 任晓龙, 吕琳媛. 网络重要节点排序方法综述[J]. 科学通报, 2014, 59(13): 1175-1197.
REN X L, LÜ L Y. Review of ranking nodes in complex networks[J]. Chin Sci Bull, 2014, 59(13): 1175-1197.
[16] BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. The Journal of Mathematical Sociology, 1972, 2(1): 113-120.
[17] CHEN D B, LÜ L, SHANG M S, et al. Identifying influential nodes in complex networks[J]. Physical A-Statistical Mechanics and Its Applications, 2012, 391(4): 1777-1787.
[18] CHEN D B, GAO H, LÜ L, et al. Identifying influential nodes in large-scale directed networks: the role of clustering[J]. PLoS One, 2013, 8(10):77455.
[19] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1979, 1(3): 215-239.
[20] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical Review Letters, 2001, 87(19): 198701.
[21] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
[22] 范维澄,孙金华,陆守香,等.火灾风险评估方法学[M].北京:科学出版社,2004.
[23] 李鹏翔,任玉晴,席酉民. 网络节点(集)重要性的一种度量指标[J].系统工程,2004,22(4):13-20
LI P X, REN Y Q, XI Y M. An importance measure of actors (set) within a network[J]. Systems Engineering, 2004, 22(4):13-20.
[1] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[2] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[3] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[4] 董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
[5] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[6] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[7] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[8] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[9] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[10] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[11] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[12] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[13] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[14] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[15] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed