Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 55-65    DOI: 10.13306/j.1672-3813.2022.03.007
  本期目录 | 过刊浏览 | 高级检索 |
复杂动态网络容错同步控制研究
陈佳音1, 刘国军2
1.长春金融高等专科学校信息技术学院,长春 130028;
2.长春理工大学高功率半导体激光国家重点实验室,长春 130022
Fault-tolerant Synchronization Control for Complex Dynamical Networks
CHEN Jiayin1, LIU Guojun2
1. Department of information technology, ChangChun Finance College,ChangChun 130028, China;
2. National Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, ChangChun 130022, China
全文: PDF(1382 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究马尔可夫复杂系统的同步控制问题,根据李雅普诺夫稳定性定理和线性矩阵不等式方法,构造了一种新的增广闭环泛函,这种泛函同时考虑当前采样与上一采样的状态信息。从而获得了马尔可夫复杂系统更低保守性的稳定性判据,还给出了一个数据采样控制器的设计方法。最后,建立了数值与仿真实例,仿真结果证明了本文所提出的方法较其他方法的优越性明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈佳音
刘国军
关键词 马尔科夫系统复杂动态网络传感器故障数据采样控制器    
Abstract:In this paper, we study a class of synchronous control problems called Markov complex systems. First, according to the Lyapunov stability theorem and the linear matrix inequality method, this paper constructs a new augmented closed-loop functional, which considers the state information of the current sample and the previous sample at the same time. Thus, a lower conservative stability criterion for Markov complex systems is obtained. At the same time, a design method of data sampling controller is given. Finally, numerical and simulation examples are established, and the simulation results prove that the method proposed in this paper has obvious advantages over other methods.
Key wordsMarkov system    complex dynamical networks    sensor fault    sampled-data controller
收稿日期: 2021-06-23      出版日期: 2022-10-12
ZTFLH:  TM743  
基金资助:吉林省教育厅“十三五”科学技术项目(JJKH20170599KJ)
通讯作者: 刘国军(1963-),男,吉林长春人,博士,研究员,主要研究方向为微光电器件。   
作者简介: 陈佳音(1978-),男,吉林长春人,博士,副教授,主要研究方向为人工智能,物联网。
引用本文:   
陈佳音, 刘国军. 复杂动态网络容错同步控制研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 55-65.
CHEN Jiayin, LIU Guojun. Fault-tolerant Synchronization Control for Complex Dynamical Networks. Complex Systems and Complexity Science, 2022, 19(3): 55-65.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.007      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/55
[1] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Physics Reports, 2006, 424(4/5):175-308.
[2] EAGLE N, PENTLAND A. Reality mining: sensing complex social systems[J]. Personal & Ubiquitous Computing, 2006, 10(4):255-268.
[3] LIU Y, LIU W, OBAID M A, et al. Exponential stability of Markovian jumping Cohen-Grossberg neural networks with mixed mode-dependent time-delays[J]. Neurocomputing, 2016, 177:409-415.
[4] PAGANI G A, AIELLO M. The power gridas a complex network: a survey[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(11):2688-2700.
[5] ZHANG H T, YU T, SANG J P, et al. Dynamic fluctuation model of complex networks with weight scaling behavior and its application to airport networks[J]. Physica A Statistical Mechanics & Its Applications, 2014, 393(1):590-599.
[6] COLMAN E R, RODGERS G J. Complex scale-free networks with tunable power-law exponent and clustering[J]. Physica A Statistical Mechanics & Its Applications, 2013, 392(21):5501-5510.
[7] ANGULO-GUZMAN S Y, POSADAS-CASTILLO C, DIAZ-ROMERO D A, et al. Chaotic synchronization of regular complex networks with fractional-order oscillators[C].IEEE 2012 20th Mediterranean Conference on Control & Automation. Barcelona, Spain: IEEE, 2012:921-927.
[8] WANG J, SU L, SHEN H, et al. Mixed H/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay[J]. Journal of the Franklin Institute, 2017,354(3):1302 -1320.
[9] WU X, LU H. Projective lag synchronization of the general complex dynamical networks with distinct nodes[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(11):4417-4429.
[10] SHEN H, PARK J H, WU Z G, et al. Finite-time H∞ synchronization for complex networks with semi-Markov jump topology[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 24(1-3):40-51.
[11] XU M, WANG J L, HUANG Y L, et al. Pinning synchronization of complex dynamical networks with and without time-varying delay[J]. Neurocomputing, 2017, 266:263-273.
[12] LI X J, YANG G H. FLS-based adaptive synchronization control of complex dynamical networks with nonlinear couplings and state-dependent uncertainties[J]. IEEE Transactions on Cybernetics, 2016, 46(1):171-180.
[13] YANG X, CAO J, LU J. Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control[J]. IEEE Transactions on Circuits & Systems I Regular Papers, 2012, 59(2):371-384
[14] JIN X Z, JU H P. Adaptive sliding-mode insensitive control of a class of non-ideal complex networked systems[J]. Information Sciences, 2014, 274(8):273-285.
[15] ZHU J W, YANG G H. Robust H dynamic output feedback synchronization for complex dynamical networks with disturbances[J]. Neurocomputing, 2016, 175:287-292.
[16] LI H. Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling[J]. Neurocomputing, 2014, 138(11):78-85.
[17] KAO C Y. An IQC approach to robust stability of aperiodic sampled-data systems[J]. IEEE Transactions on Automatic Control, 2016, 61(8):2219-2225.
[18] SEURET A, BRIAT C. Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals[J]. Automatica, 2015,55:274-278.
[19] ZENG H B, TEO K L, HE Y. A new looped-functional for stability analysis of sampled-data systems[J]. Automatica, 2017,82:328-331.
[20] ZENG H B, HE Y, WU M, et al. New results on stability analysis for systems with discrete distributed delay[J]. Automatica, 2015, 60:189-192.
[21] ZENG H B, TEO K L, HE Y, et al. Sampled-data synchronization control for chaotic neural networks subject to actuator saturation[J]. Neurocomputing, 2017, 185:1656-1667.
[22] FANG M. Synchronization for complex dynamical networks with time delay and discrete-time information[J]. Applied Mathematics & Computation, 2015, 258:1-11.
[23] RAKKIYAPPAN R, LATHA V P, Zhu Q, et al. Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators[J]. Nonlinear Analysis Hybrid Systems, 2017, 24:28-44.
[24] ZENG D, ZHANG R, ZHONG S, et al. Sampled-data synchronization control for Markovian delayed complex dynamical networks via a novel convex optimization method [J]. Neurocomputing, 2017,266:606-618.
[25] SIVARANJIANI K, RAKKIYAPPAN R. Delayed impulsive synchronization of nonlinearly coupled Markovian jumping complex dynamical networks with stochastic perturbations[J]. Nonlinear Dynamics, 2017, 88(3): 1917-1934.
[26] LI X, RAKKIYAPPAN R, SAKTHIVEL N. Non-fragile synchronization control for markovian jumping complex dynamical networks with probabilistic time-varying coupling delays[J]. Asian Journal of Control, 2015, 17(5):1678-1695.
[27] RAKKIYAPPAN, S. Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays[J]. Chinese Physics B, 2014, 23(2):49-63.
[28] SIVARANJANI K, RAKKIYAPPAN R. Pinning sampled-data synchronization of complex dynamical networks with Markovian jumping and mixed delays using multiple integral approach[J]. Complexity, 2016, 21(S1):622-632.
[29] XIE Q, SI G, ZHANG Y, et al. Finite-time synchronization and identification of complex delayed networks with Markovian jumping parameters and stochastic perturbations[J]. Chaos Solitons & Fractals, 2016, 86:35-49.
[30] WANGX, FANG J A, MAO H, et al. Finite-time global synchronization for a class of Markovian jump complex networks with partially unknown transition rates under feedback control[J]. Nonlinear Dynamics, 2015, 79(1):47-61.
[31] XU R, KAO Y, GAO C. Exponential synchronization of delayed Markovian jump complex networks with generally uncertain transition rates[J]. Applied Mathematics and Computation, 2015, 271: 682-693.
[32] LIU Y, WANG Z, YUAN Y, et al. Event-triggered partial-nodes-based state estimation for delayed complex networks with bounded distributed delays[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 49(6):1088-1098.
[33] HU J B, LU G P, ZHAN L D. Synchronization of fractional chaotic complex networks with distributed delays[J]. Nonlinear Dynamics, 2016, 83(1/2):1101-1108.
[34] WANG J, SU L, SHEN H, et al. Mixed H∞,/passive sampled-data synchronization control of complex dynamical networks with distributed coupling delay[J]. Journal of the Franklin Institute, 2017, 354(3):1302-1320.
[35] WU Z G, SHI P, SU H, et al. Stochastic synchronization of markovian jump neural networks with time-varying delay using sampled data[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1796-1807.
[36] CHEN Z, SHI K, ZHONG S. New synchronization criteria for complex delayed dynamical networks with sampled-data feedback control.[J]. Isa Transactions, 2016, 63:154-169.
[37] LIU X Z, DI Y P, GAO L. Fault-tolerant control of networked control systems with time-varying delay[C]// IEEE International Conference on Control and Automation. Hangzhou, China: IEEE, 2013:750-754.
[38] SU L, SHEN H. Fault-tolerant mixed H/passive synchronization for delayed chaotic neural networks with sampled-data control[J]. Complexity, 2016, 21(6):246-259.
[39] YE D, YANG X, Su L. Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology[J]. Applied Mathematics & Computation, 2017, 312:36-48.
[40] WANG C, FAN C, GONG L. Fault tolerant synchronization for a general complex dynamical networkwith random delay[J]. Journal of Harbin of Technology, 2017, 24(1):51-56.
[41] SEURET A, GOUAISBAUT F. Wirtinger-based integral inequality: application to time-delay systems[J]. Automatica, 2013, 49(9):2860-2866.
[42] ZHANG H, WNG J, WANG Z, et al. Sampled-data synchronization analysis of markovian neural networks with generally incomplete transition rates[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(3):740-752.
[43] WU Z G, JU H P, SU H, et al. Exponential synchronization for complex dynamical networks with sampled-data[J]. Journal of the Franklin Institute, 2012, 349(9):2735-2749.
[44] WU Z G, SHI P, SU H, et al. Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay[J]. IEEE Transactions on Neural Networks & Learning Systems, 2013, 24(8):1177-1187.
[45] SU L, SHEN H. Mixed H/passive synchronization for complex dynamical networks with sampled-data control[J]. Applied Mathematics & Computation, 2015, 259:931-942.
[46] WANG J, ZHANG H, WANG Z. Sampled-data synchronization for complex networks based on discontinuous LKF and mixed convex combination[J]. Journal of the Franklin Institute, 2015, 352(11):4741-4757.
[47] LIU Y, GUO B Z, PARK J H, et al. Non-fragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(1):118-128.
[48] YANG H, SHU L, ZHONG S, et al. Extended dissipative exponential synchronization of complex dynamical systems with coupling delay and sampled-data control [J]. Journal of the Franklin Institute, 2016, 353(8):1829-1847.
[49] SHAO H Y, HU A H, LIU D. Synchronization of Markovian jumping complex networks with event-triggered control[J]. Chinese Physics B, 2015, 24(9):595-602.
[1] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
[2] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed