Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 88-93    DOI: 10.13306/j.1672-3813.2022.03.011
  本期目录 | 过刊浏览 | 高级检索 |
无人驾驶系统中执行器攻击检测算法设计
韩笑, 张梦真, 吴易, 崔孝凯, 邱长滨, 王庆芝, 刘其朋
青岛大学复杂性科学研究所,山东 青岛 266071
Actuator Attack Detection for Autonomous Vehicles
HAN Xiao, ZHANG Mengzhen, WU Yi, CUI Xiaokai, QIU Changbin, WANG Qingzhi, LIU Qipeng
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1784 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为保证执行器的安全,提出了一种检测执行器攻击并确定攻击类型的方法。根据车载传感器的测量数据,采用最大似然估计的方法计算执行器所执行的实际控制指令,然后与车载计算机发送的上游指令对比,判断执行器是否执行了预期指令。仿真平台上的实验结果表明,该执行器攻击检测算法能够有效、及时地检测出攻击,并准确识别出具体攻击类型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩笑
张梦真
吴易
崔孝凯
邱长滨
王庆芝
刘其朋
关键词 无人驾驶汽车执行器攻击检测    
Abstract:This paper proposes a method to detect the compromised actuators and then determine the attack types. Based on sensor measurements, the actual control command conducted by the actuator can be estimated using maximum likelihood estimation method; and then by comparing the estimated command with the reference one which is sent from the on-board computer, we are able to figure out whether the control command is successfully conducted by the actuator or not. Experimental results based on simulation platform show that the detector can effectively detect error once the attack occurs and precisely identify the specific type of the sensor attack.
Key wordsautonomous driving    actuator    attack detection
收稿日期: 2021-05-02      出版日期: 2022-10-12
ZTFLH:  TP183  
基金资助:国家自然科学基金(61903212)
通讯作者: 刘其朋(1985-),男,山东菏泽人,博士,副教授,主要研究方向为自动驾驶与智能交通。   
作者简介: 韩笑(1997-),男,江苏南京人,硕士研究生,主要研究方向为无人驾驶。
引用本文:   
韩笑, 张梦真, 吴易, 崔孝凯, 邱长滨, 王庆芝, 刘其朋. 无人驾驶系统中执行器攻击检测算法设计[J]. 复杂系统与复杂性科学, 2022, 19(3): 88-93.
HAN Xiao, ZHANG Mengzhen, WU Yi, CUI Xiaokai, QIU Changbin, WANG Qingzhi, LIU Qipeng. Actuator Attack Detection for Autonomous Vehicles. Complex Systems and Complexity Science, 2022, 19(3): 88-93.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.011      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/88
[1] 彭育辉, 江铭, 马中原, 等. 汽车自动驾驶关键技术研究进展[J]. 福州大学学报(自然科学版), 2021, 49(5): 691-703.
PENG Y H, JIANG M, MA Z Y, et al. Review on development of key technology for autonomous vehicle[J]. Journal of Fuzhou University (Natural Science Edition), 2021, 49(5): 691-703.
[2] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020,17(4): 30-37.
ZHENG Z H, LIU Q P. Autonomous driving systems trained by reinforcement learning with visual features extraction[J]. Complexity Systems and Complexity Science, 2020, 17(4): 30-37.
[3] HAMID U Z A, PUSHKIN K, ZAMZURI H, et al. Current collision mitigation technologies for advanced driver assistance systems-a survey[J]. Perintis eJournal, 2016, 6(2): 78-90.
[4] SHEEHAN B, MURPHY F, MULLINS M, et al. Connected and autonomous vehicles: a cyber-risk classification framework[J]. Transportation Research Part A, 2019, 124: 523-536.
[5] PARKINSON S, WARD P, WILSON K, et al. Cyber threats facing autonomous and connected vehicles: future challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 2898-2915.
[6] PETIT J, SHLADOVER S E. Potential cyberattacks on automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 546-556.
[7] 冯敏健, 张辉, 巨志扬, 等. 基于LGSVL/Apollo的网络延迟攻击下自动驾驶车辆定位估算[J]. 汽车安全与节能学报, 2021, 12(1): 62-69.
FENG M J, ZHANG H, JU Z Y, et al. Localization estimation algorithm under cyber delay attack for autonomous vehicle based on LGSVL/Apollo[J]. Journal of Automotive Safety and Energy, 2021, 12(1): 62-69.
[8] 李慧云, 邵翠萍, 陈贝章, 等. 基于矩阵补全的无人车感知系统的攻击防御技术[J]. 集成技术, 2020, 9(5): 1-14.
LI H Y, SHAO C P, CHEN B Z, et al. Attack defense technology of unmanned vehicle perception system based on matrix completion[J]. Journal of Integration Technology, 2020, 9(5):1-14.
[9] 叶斌, 葛万成. 基于对抗补丁的交通标牌攻击[J]. 通信技术, 2021, 54(3): 664-671.
YE B, GE W C. Traffic sign attack based on adversarial patch[J]. Communications Technology, 2021, 54(3): 664-671.
[10] 陈晋音, 陈治清, 郑海斌, 等. 基于PSO的路牌识别模型黑盒对抗攻击方法[J]. 软件学报, 2020, 31(9): 2785-2801.
CHEN J Y, CHEN Y Q, ZHENG H B, et al. Black-box physical attack against road sign recognition model via PSO[J]. Journal of Software, 2020, 31(9): 2785-2801.
[11] KONG J, PFEIFFER M, SCHILDBACH G, et al. Kinematic and dynamic vehicle models for autonomous driving control design[C]// 2015 IEEE Intelligent Vehicles Symposium. Seoul, Korea: IEEE, 2015: 1094-1099.
[12] AGUERO C E, KOENIG N, CHEN I, et al. Inside the virtual robotics challenge: simulating real-time robotic disaster response[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 494-506.
[13] KATO S, TAKEUCHI E, ISHIGURO Y, et al. An open approach to autonomous vehicles[J]. IEEE Micro, 2015, 35(6): 60-68.
[14] QUIGLEY M, GERKEY B P, CONLEY K, et al. ROS: an open-source robot operating system[C]// 2009 ICRA Workshop on Open Source Software. Kobe, Japan: IEEE, 2009: 5.
[15] BIBER P, STRABER W. The normal distributions transform: a new approach to laser scan matching[C]// 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2003: 2743-2748.
[16] KRAVCHIK M, SHABTAI A. Detecting cyber attacks in industrial control systems using convolutional neural networks[C]// 2018 ACM Workshop on Cyber-Physical Systems Security and Privacy. Toronto, Canada: ACM, 2018: 72-83.
[17] SHIN J, BAEK Y, EUN Y, et al. Intelligent sensor attack detection and identification for automotive cyber-physical systems[C]// 2017 IEEE Symposium Series on Computational Intelligence (SSCI). Hawaii, USA: IEEE, 2017: 3380-3387.
[18] 闻佳, 王宏君, 邓佳, 等. 基于深度学习的异常事件检测[J]. 电子学报, 2020, 48(2): 308-313.
WEN J, WANG H J, DENG J, et al. Abnormal event detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(2): 308-313.
[1] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[2] 朱锋, 刘其朋. 基于生成对抗网络的半监督图像语义分割[J]. 复杂系统与复杂性科学, 2021, 18(1): 23-29.
[3] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020, 17(4): 30-37.
[4] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed