Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (3): 94-103    DOI: 10.13306/j.1672-3813.2022.03.012
  本期目录 | 过刊浏览 | 高级检索 |
一个新三维切换混沌系统的研究与同步应用
闫少辉, 施万林a, 王棋羽a, 任钰a
西北师范大学 a.物理与电子工程学院; b.甘肃省智能信息技术与应用工程研究中心,兰州 730070
Research and Synchronization Application of a New 3-D Switched Chaotic System
YAN Shaohui, SHI Wanlina, WANG Qiyua, REN Yua
a. College of Physics and Electronic Engineering;b. Engineering Research Centre of Gansu Province for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China
全文: PDF(5024 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高混沌系统的随机性,提出两个互为反结构的混沌系统,并设计切换函数,将其组合成一个新的自动切换混沌系统。通过研究系统的平衡点稳定性、混沌吸引子相图、Lyapunov指数谱、分岔图以Poincaré截面和功率谱,分析该切换混沌系统的基本动力学行为与混沌特性;通过计算谱熵复杂度和C0复杂度证实切换混沌系统的复杂度明显高于子混沌系统;基于Multisim软件设计系统的模拟电路仿真实验证实该切换系统是可行的;通过耦合同步方法实现两系统的同步,并应用到混沌掩盖保密通信中。实验结果表明此方法的可行性与有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫少辉
施万林
王棋羽
任钰
关键词 混沌系统动力学特性电路仿真同步控制保密通信    
Abstract:To improve the randomness of chaotic systems, two chaotic systems with anti-structures have been proposed that are combined into a new automatic switching chaotic system by virtue of a switching function. The basic dynamic behaviors and rich chaotic characteristics of the switched chaotic system are analyzed upon studying the stability of the equilibrium point, chaotic attractor phase diagram, Lyapunov exponent spectrum, bifurcation diagram, Poincaré cross section and power spectrum of the system. With the help of the calculation of the spectral entropy complexity (SE) and C0 complexity, the complexity of switched chaotic system is proved to be substantially higher than that of the sub-chaotic system. Based on Multisim software, the analog circuit simulation experiment of the system is designed. The simulation results show that the switched system is feasible. The synchronization of the two systems is realized by the coupling synchronization method, and it is applied to the chaotic masking secure communication. The experimental results show that this method is feasible and effective.
Key wordschaotic system    kinetic characteristics    circuit simulation    synchronization control    secure communication
收稿日期: 2021-04-14      出版日期: 2022-10-12
ZTFLH:  TM132  
  TN702  
基金资助:甘肃省自然科学基金 (20JR5RA531)
作者简介: 闫少辉(1980-),女,甘肃镇原人,博士,副教授,主要研究方向为非线性电路及应用。
引用本文:   
闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
YAN Shaohui, SHI Wanlin, WANG Qiyu, REN Yu. Research and Synchronization Application of a New 3-D Switched Chaotic System. Complex Systems and Complexity Science, 2022, 19(3): 94-103.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.03.012      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I3/94
[1] AHMAD I, SHAFIQ M, AL-SAWALHA M M. Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications[J]. Chinese Journal of Physics, 2018, 56(3): 974-987.
[2] AZZAZ M S, TANOUGAST C, SADOUDI S, et al. A new auto-switched chaotic system and its FPGA implement-tation[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(7): 1792-1804.
[3] YANG J, CHEN Y, ZHENG Z, et al. Robust adaptive state estimation for uncertain nonlinear switched systems with unknown inputs[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1082-1091.
[4] 郑莉,孙常春. 新切换混沌系统的构造及自适应同步[J]. 沈阳工业大学学报, 2019, 41(4): 440-444.
ZHENG L, SUN C C. Construction and adaptive synchronization of a novel switched chaotic sys-tem[J]. Journal of Shenyang University of Technology, 2019, 41(4): 440-444.
[5] 马新东,毕勤胜. 切换电路系统的复杂行为及其机理[J]. 物理学报, 2012, 61(24): 95-101.
MA X D, BI Q S. Complicated behaviors as well as the mechanism of the switching circuit[J]. Acta Physica Sinica, 2012, 61(24): 95-101.
[6] 王忠林, 刘树堂. 一个切换Lorenz混沌系统的特性分析[J]. 重庆邮电大学学报(自然科学版), 2017, 29(1): 68-74.
WANG Z L, LIU S L. Analysis of properties of a switched Lorenz type chaotic system[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2017, 29(1): 68-74.
[7] 张成亮,胡春华,王忠林. 三系统自动切换混沌电路的设计与实现[J].山东大学学报:理学版, 2012, 47(8): 108-113, 121.
ZHANG C L, HU C H, WANG Z L. The design and implementation of chaotic circuit of three automatically switched subsystems[J]. Journal of Shandong University, 2012, 47(8): 108-113, 121.
[8] 颜闽秀,徐辉. 反结构切换混沌系统[J]. 武汉科技大学学报(自然科学版), 2019, 42(6): 463-468.
YAN M X, XU H. Anti-structure switchable chaotic system[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2019, 42(6): 463-468.
[9] WANG N, ZHANG G S, LING R, et al. Coexisting asymmetric behavior and free control in a simple 3-D chaotic system[J]. AEU- International Journal of Electronics and Communications, 2020, 122(1): 1-13.
[10] LI X Y, WANG H J. Homoclinic and heteroclinic orbits and bifurcations of a new lorenz-type system[J]. International Journal of Bifurcation and Chaos, 2011, 21(9): 2695-2712.
[11] WANG M, DENG Y, LIAO X, et al. Dynamics and circuit implementation of a four-wing memristive chaotic system with attractor rotation[J]. International Journal of Non-Linear Mechanics, 2019, 111(1): 149-159.
[12] LI H M, YANG Y F, LI W, et al. Extremely rich dynamics in a memristor-based chaotic system[J]. The European Physical Journal Plus, 2020, 135(2): 579-590.
[13] HE S, SUN K, WANG H. Complexity analysis and DSP implementation of the fractional-order lorenz hyper-chaotic system[J]. Entropy, 2015, 17(12): 8299-8311.
[14] 叶晓林, 牟俊, 王智森, 等. 基于SE和C0算法的连续混沌系统复杂度分析[J].大连工业大学学报, 2018, 37(1): 67-72.
YE X L, MOU J, WANG Z S, et al. Analysis of continuous chaotic complexity based on SE and C0 algorithm[J]. Journal of Dalian Polytechnic University, 2018, 37(1): 67-72.
[15] 孙克辉, 贺少波, 朱从旭, 等. 基于C0算法的混沌系统复杂度特性分析[J]. 电子学报, 2013, 41(9): 1765-1771.
SUN K H, HE S B, ZHU C X, et al. Analysis of chaotic complexity characteristics based on C0 algorithm[J]. Acta Electronica Sinica, 2013, 41(9): 1765-1771.
[16] MA C, MOU J, XIONG L, et al. Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization[J]. Nonlinear Dynamics, 2021, 103(6): 1-14.
[17] WANG H, YE J M, MIAO Z, et al. Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1177-1187.
[18] VINCENT U E, SASEYI A O, MCCLINTOCK, P V E. Multi-switching combination synchronization of chaotic systems[J]. Nonlinear Dynamics, 2015, 80(1/2): 845-854.
[19] 付宏睿, 董永刚, 张建刚. 基于三维自治系统复杂网络的混沌保密通信系统[J].吉林大学学报(理学版), 2018, 56(2): 420-425.
FU H R, DONG Y G, ZHANG J G. Chaotic secure communication system of complex networks based on three-dimensional autonomous system[J]. Journal of Jilin University (Science Edition), 2018, 56(2): 420-425.
[20] ROOHI M, KHOOBAN M H, ESFAHANI Z, et al. A switching sliding mode control technique for chaos sup-pression of fractional-order complex systems[J]. Transactions of the Institute of Measurement and Control, 2019, 41(10): 2932-2946.
[21] BETTAYEB M, AL-SAGGAF U M, DJENNOUNE S. Single channel secure communication scheme based on synchronization of fractional-order chaotic Chua’s systems[J]. Transactions of the Institute of Measurement and Control, 2018, 40(13): 3651-3664.
[22] LOUODOP P, FOTSIM H, BOWONG S, et al. Adaptive time-delay synchronization of chaotic systems with uncertainties using a nonlinear feedback coupling[J]. Journal of Vibration and Control, 2014, 20(6): 815-826.
[1] 祝晓静, 李科赞, 丁勇. 相继投影同步及其在保密通信中的应用[J]. 复杂系统与复杂性科学, 2022, 19(1): 27-33.
[2] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[3] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed