Research and Synchronization Application of a New 3-D Switched Chaotic System
YAN Shaohui, SHI Wanlina, WANG Qiyua, REN Yua
a. College of Physics and Electronic Engineering;b. Engineering Research Centre of Gansu Province for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China
Abstract:To improve the randomness of chaotic systems, two chaotic systems with anti-structures have been proposed that are combined into a new automatic switching chaotic system by virtue of a switching function. The basic dynamic behaviors and rich chaotic characteristics of the switched chaotic system are analyzed upon studying the stability of the equilibrium point, chaotic attractor phase diagram, Lyapunov exponent spectrum, bifurcation diagram, Poincaré cross section and power spectrum of the system. With the help of the calculation of the spectral entropy complexity (SE) and C0 complexity, the complexity of switched chaotic system is proved to be substantially higher than that of the sub-chaotic system. Based on Multisim software, the analog circuit simulation experiment of the system is designed. The simulation results show that the switched system is feasible. The synchronization of the two systems is realized by the coupling synchronization method, and it is applied to the chaotic masking secure communication. The experimental results show that this method is feasible and effective.
闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
YAN Shaohui, SHI Wanlin, WANG Qiyu, REN Yu. Research and Synchronization Application of a New 3-D Switched Chaotic System. Complex Systems and Complexity Science, 2022, 19(3): 94-103.
[1] AHMAD I, SHAFIQ M, AL-SAWALHA M M. Globally exponential multi switching-combination synchronization control of chaotic systems for secure communications[J]. Chinese Journal of Physics, 2018, 56(3): 974-987. [2] AZZAZ M S, TANOUGAST C, SADOUDI S, et al. A new auto-switched chaotic system and its FPGA implement-tation[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(7): 1792-1804. [3] YANG J, CHEN Y, ZHENG Z, et al. Robust adaptive state estimation for uncertain nonlinear switched systems with unknown inputs[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1082-1091. [4] 郑莉,孙常春. 新切换混沌系统的构造及自适应同步[J]. 沈阳工业大学学报, 2019, 41(4): 440-444. ZHENG L, SUN C C. Construction and adaptive synchronization of a novel switched chaotic sys-tem[J]. Journal of Shenyang University of Technology, 2019, 41(4): 440-444. [5] 马新东,毕勤胜. 切换电路系统的复杂行为及其机理[J]. 物理学报, 2012, 61(24): 95-101. MA X D, BI Q S. Complicated behaviors as well as the mechanism of the switching circuit[J]. Acta Physica Sinica, 2012, 61(24): 95-101. [6] 王忠林, 刘树堂. 一个切换Lorenz混沌系统的特性分析[J]. 重庆邮电大学学报(自然科学版), 2017, 29(1): 68-74. WANG Z L, LIU S L. Analysis of properties of a switched Lorenz type chaotic system[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2017, 29(1): 68-74. [7] 张成亮,胡春华,王忠林. 三系统自动切换混沌电路的设计与实现[J].山东大学学报:理学版, 2012, 47(8): 108-113, 121. ZHANG C L, HU C H, WANG Z L. The design and implementation of chaotic circuit of three automatically switched subsystems[J]. Journal of Shandong University, 2012, 47(8): 108-113, 121. [8] 颜闽秀,徐辉. 反结构切换混沌系统[J]. 武汉科技大学学报(自然科学版), 2019, 42(6): 463-468. YAN M X, XU H. Anti-structure switchable chaotic system[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2019, 42(6): 463-468. [9] WANG N, ZHANG G S, LING R, et al. Coexisting asymmetric behavior and free control in a simple 3-D chaotic system[J]. AEU- International Journal of Electronics and Communications, 2020, 122(1): 1-13. [10] LI X Y, WANG H J. Homoclinic and heteroclinic orbits and bifurcations of a new lorenz-type system[J]. International Journal of Bifurcation and Chaos, 2011, 21(9): 2695-2712. [11] WANG M, DENG Y, LIAO X, et al. Dynamics and circuit implementation of a four-wing memristive chaotic system with attractor rotation[J]. International Journal of Non-Linear Mechanics, 2019, 111(1): 149-159. [12] LI H M, YANG Y F, LI W, et al. Extremely rich dynamics in a memristor-based chaotic system[J]. The European Physical Journal Plus, 2020, 135(2): 579-590. [13] HE S, SUN K, WANG H. Complexity analysis and DSP implementation of the fractional-order lorenz hyper-chaotic system[J]. Entropy, 2015, 17(12): 8299-8311. [14] 叶晓林, 牟俊, 王智森, 等. 基于SE和C0算法的连续混沌系统复杂度分析[J].大连工业大学学报, 2018, 37(1): 67-72. YE X L, MOU J, WANG Z S, et al. Analysis of continuous chaotic complexity based on SE and C0 algorithm[J]. Journal of Dalian Polytechnic University, 2018, 37(1): 67-72. [15] 孙克辉, 贺少波, 朱从旭, 等. 基于C0算法的混沌系统复杂度特性分析[J]. 电子学报, 2013, 41(9): 1765-1771. SUN K H, HE S B, ZHU C X, et al. Analysis of chaotic complexity characteristics based on C0 algorithm[J]. Acta Electronica Sinica, 2013, 41(9): 1765-1771. [16] MA C, MOU J, XIONG L, et al. Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization[J]. Nonlinear Dynamics, 2021, 103(6): 1-14. [17] WANG H, YE J M, MIAO Z, et al. Robust finite-time chaos synchronization of time-delay chaotic systems and its application in secure communication[J]. Transactions of the Institute of Measurement and Control, 2018, 40(4): 1177-1187. [18] VINCENT U E, SASEYI A O, MCCLINTOCK, P V E. Multi-switching combination synchronization of chaotic systems[J]. Nonlinear Dynamics, 2015, 80(1/2): 845-854. [19] 付宏睿, 董永刚, 张建刚. 基于三维自治系统复杂网络的混沌保密通信系统[J].吉林大学学报(理学版), 2018, 56(2): 420-425. FU H R, DONG Y G, ZHANG J G. Chaotic secure communication system of complex networks based on three-dimensional autonomous system[J]. Journal of Jilin University (Science Edition), 2018, 56(2): 420-425. [20] ROOHI M, KHOOBAN M H, ESFAHANI Z, et al. A switching sliding mode control technique for chaos sup-pression of fractional-order complex systems[J]. Transactions of the Institute of Measurement and Control, 2019, 41(10): 2932-2946. [21] BETTAYEB M, AL-SAGGAF U M, DJENNOUNE S. Single channel secure communication scheme based on synchronization of fractional-order chaotic Chua’s systems[J]. Transactions of the Institute of Measurement and Control, 2018, 40(13): 3651-3664. [22] LOUODOP P, FOTSIM H, BOWONG S, et al. Adaptive time-delay synchronization of chaotic systems with uncertainties using a nonlinear feedback coupling[J]. Journal of Vibration and Control, 2014, 20(6): 815-826.