Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 7-16    DOI: 10.13306/j.1672-3813.2022.04.002
  本期目录 | 过刊浏览 | 高级检索 |
社交媒体中的跨平台信息扩散特征及机制
王玉, 许楠楠, 胡海波
华东理工大学管理科学与工程系,上海 200237
Characteristics and Mechanisms of Cross-platform Information Diffusion in Social Media
WANG Yu, XU Nannan, HU Haibo
Department of Management Science and Technology, East China University of Science and Technology, Shanghai 200237, China
全文: PDF(2040 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为揭示社交媒体中跨平台信息扩散的特征及影响因素,以昆山反杀案事件为例,利用统计推断和回归分析方法,研究了其他平台的信息在新浪微博中的扩散特征及相关因素。发现用户在微博的高信息量和获取信息的便利性之间权衡时更倾向于后者,跨平台信息的可传递性、基本再生数和扩散深度均显著小于非跨平台者。来自微信公众号、微博视频、微博文章和新浪新闻的信息在扩散深度和规模上相对其他类信息更有优势。与普通用户相比,认证为媒体和政务的用户从新闻平台转发的信息扩散规模更大。综合考虑信息的类型及来源平台能更好地理解突发社会事件在互联网空间中的传播,藉此有助于高效地引导或控制舆情演变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玉
许楠楠
胡海波
关键词 信息扩散跨平台社交网络用户行为    
Abstract:To reveal the characteristics and influencing factors of cross-platform information diffusion in social media, this paper took the Legitimate Defense Case in Kunshan as an example and studied the characteristics and related factors of information diffusion from other platforms to Sina Weibo using statistical inference and regression analysis methods. We found that users are more inclined to the latter when balancing the high amount of information in microblogs with the convenience of obtaining information, and the transmissibility, basic reproductive number and diffusion depth of cross-platform information are significantly lower than those of non-cross-platform information. Information from WeChat official accounts, Weibo videos, Weibo articles and Sina news has more advantages over other types of information in terms of depth and scale of diffusion. Compared with ordinary users, users who are authenticated as media and government administration spread information from news platforms on a larger scale. A comprehensive consideration of the types and source platforms of information can help us to better understand the spreading of sudden social events in the Internet space, thus helping to effectively guide or control the evolution of public opinion.
Key wordsinformation diffusion    cross-platform    social network    user behavior
收稿日期: 2021-06-16      出版日期: 2023-01-09
ZTFLH:  N949  
  TP393  
基金资助:国家自然科学基金(61973121)
通讯作者: 胡海波(1980),男,山东莱西人,博士,副教授,主要研究方向为社交网络与社会化媒体。   
作者简介: 王玉(1996),女,安徽六安人,硕士研究生,主要研究方向为社会化媒体。
引用本文:   
王玉, 许楠楠, 胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 7-16.
WANG Yu, XU Nannan, HU Haibo. Characteristics and Mechanisms of Cross-platform Information Diffusion in Social Media. Complex Systems and Complexity Science, 2022, 19(4): 7-16.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.002      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/7
[1] 李栋, 徐志明, 李生, 等. 在线社会网络中信息扩散[J]. 计算机学报, 2014, 37(1): 189206.
LI D, XU Z M, LI S, et al. A survey on information diffusion in online social networks[J]. Chinese Journal of Computers, 2014, 37(1): 189206.
[2] 许小可, 胡海波, 张伦, 等. 社交网络上的计算传播学[M]. 北京: 高等教育出版社, 2015.
[3] 刘红丽, 黄雅丽, 罗春海, 等. 基于用户行为的微博网络信息扩散模型[J]. 物理学报, 2016, 65(15): 158901.
LIU H L, HUANG Y L, LUO C H, et al. Modeling information diffusion on microblog networks based on users' behaviors[J]. Acta Physica Sinica, 2016, 65(15): 158901.
[4] ZHANG Z K, LIU C, ZHAN X X, et al. Dynamics of information diffusion and its applications on complex networks[J]. Physics Reports, 2016, 651: 134.
[5] 李沧海, 许益贴, 罗春海, 等. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 7584.
LI C H, XU Y T, LUO C H, et al. Spatial analysis of microblog information diffusion[J]. Complex Systems and Complexity Science, 2017, 14(3): 7584.
[6] 张凌, 罗曼曼, 朱礼军. 基于社交网络的信息扩散分析研究[J]. 数据分析与知识发现, 2018, 2(2): 4657.
ZHANG L, LUO M M, ZHU L J. Analyzing information dissemination on social networks[J]. Data Analysis and Knowledge Discovery, 2018, 2(2): 4657.
[7] WANG X C, LAN Y H, XIAO J H. Anomalous structure and dynamics in news diffusion among heterogeneous individuals[J]. Nature Human Bhaviour, 2019, 3(7): 709718.
[8] ZHOU B, PEI S, MUCHNIK L, et al. Realistic modelling of information spread using peer-to-peer diffusion patterns[J]. Nature Human Behaviour, 2020, 4(11): 110.
[9] XIE J R, MENG F H, SUN J C, et al. Detecting and modelling real percolation and phase transitions of information on social media[J]. Nature Human Behaviour, 2021, 5: 11611168.
[10] SEGAULT A. Crossplatform references on social media: methodological challenges and research avenues[C]//Proceedings of the 2nd International Conference on Web Studies. New York: ACM, 2018: 5255.
[11] 饶元, 吴连伟, 张君毅. 跨媒介舆情网络环境下信息传播机制研究与进展[J]. 中国科学: 信息科学, 2017, 47(12): 16231645.
RAO Y, WU L W, ZHANG J Y. A survey of information propaganda mechanism under the cross-medium[J]. Scientia Sinica Informationis, 2017, 47(12): 16231645.
[12] WEBSTER J G, KSIAZEK T B. The dynamics of audience fragmentation: public attention in an age of digital media[J]. Journal of Communication, 2012, 62(1): 3956.
[13] NEUBAUM G, KRAÄMER N C. Opinion climates in social media: blending mass and interpersonal communication[J]. Human Communication Research, 2017, 43(4): 464476.
[14] GUGGENHEIM L, JANG S M, BAE S Y, et al. The dynamics of issue frame competition in traditional and social media[J]. The ANNALS of the American Academy of Political and Social Science, 2015, 659(1): 207224.
[15] SHUAI X, LIU X, XIA T, et al. Comparing the pulses of categorical hot events in Twitter and Weibo[C]//Proceedings of the 25th ACM Conference on Hypertext and Social Media. New York: ACM, 2014: 126135.
[16] CHA M, PEÉREZ J A N, HADDADI H. Flash floods and ripples: the spread of media content through the blogosphere[C]//Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media. Palo Alto, California: AAAI, 2009.
[17] HEIMBACH I, SCHILLER B, STRUFE T, et al. Content virality on online social networks: empirical evidence from Twitter, Facebook, and Google+ on German news websites[C]//Proceedings of the 26th ACM Conference on Hypertext & Social Media. New York: ACM, 2015: 3947.
[18] MYERS S A, ZHU C, LESKOVEC J. Information diffusion and external influence in networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012: 3341.
[19] LESKOVEC J, BACKSTROM L, KLEINBERG J. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 497506.
[20] RODRIGUEZ M G, LESKOVEC J, KRAUSE A. Inferring networks of diffusion and influence[C]//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 10191028.
[21] RODRIGUEZ M G, LESKOVEC J, BALDUZZI D, et al. Uncovering the structure and temporal dynamics of information propagation[J]. Network Science, 2014, 2(1): 2665.
[22] KIM M, NEWTH D, CHRISTEN P. Modeling dynamics of diffusion across heterogeneous social networks: news diffusion in social media[J]. Entropy, 2013, 15(10): 42154242.
[23] KIM M, NEWTH D, CHRISTEN P. Macro-level information transfer in social media: reflections of crowd phenomena[J]. Neurocomputing, 2016, 172: 8499.
[24] JULIA C, NICOLAS H, MARIE-LUCE V. The production of information in an online world[J]. The Review of Economic Studies, 2020, 87: 21262164.
[25] JOHNSON N F, LEAHY R, RESTREPO N J, et al. Hidden resilience and adaptive dynamics of the global online hate ecology[J]. Nature, 2019, 573(7773): 261265.
[26] VELAÁSQUEZ N, LEAHY R, RESTREPO N J, et al. Hate multiverse spreads malicious COVID-19 content online beyond individual platform control[EB/OL]. [20200810]. https://arxiv.org/abs/2004.00673.
[27] IRIBARREN J L, MORO E. Affinity paths and information diffusion in social networks[J]. Social Networks, 2011, 33: 134142.
[28] GOEL S, ANDERSON A, HOFMAN J, et al. The structural virality of online diffusion[J]. Management Science, 2016, 62(1): 180196.
[29] MARTIN T, HOFMAN J M, SHARMA A, et al. Exploring limits to prediction in complex social systems[C]//Proceedings of the 25th International Conference on World Wide Web. New York: ACM, 2016: 683694.
[1] 王浩, 许小可. 融合文本和表情符号特征的社交网络用户性别识别[J]. 复杂系统与复杂性科学, 2022, 19(4): 17-24.
[2] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[3] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[4] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[5] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[6] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[7] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[8] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[9] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[10] 李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed