Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 97-102    DOI: 10.13306/j.1672-3813.2023.03.013
  本期目录 | 过刊浏览 | 高级检索 |
基于强化学习的多机器人系统的环围编队控制
韩艺琳, 王丽丽, 杨洪勇, 范之琳
鲁东大学信息与电气工程学院,山东 烟台 264025
Ring-around Formation Control of Multi-robot Systems Based on Reinforcement Learning
HAN Yilin, WANG Lili, YANG Hongyong, FAN Zhilin
School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
全文: PDF(1333 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对机器人对未知目标的编队跟踪问题,建立机器人运动控制模型,提出了基于强化学习的目标跟踪与环围控制策略。在强化学习策略驱动下,机器人探索发现目标点位置并展开跟踪,使用环围编队运动模型对机器人跟踪策略进行实时优化,实现对逃逸目标点的动态跟踪与环围控制。搭建了多机器人运动测试环境,实验表明结合强化学习的方法能够缩短多机器人编队调节时间,验证了多机器人环围编队控制策略的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩艺琳
王丽丽
杨洪勇
范之琳
关键词 运动控制强化学习目标跟踪环围控制    
Abstract:For the robot formation tracking problem of unknown target, a robot motion control model is established, and a target tracking and ring-around control strategy based on Reinforcement Learning(RL) is proposed to solve the problem. Driven by RL, the robot explore the location of the target point and initiate tracking. The robot tracking strategy is optimized in real time using the ring-around formation motion model to achieve dynamic tracking and ring-around control of the fleeing target point. A multi-robot motion control environment is established, and the experiments indicate that the combined RL can accelerate the multi-robot formation adjustment time and prove the efficiency of the multi-robot ring-around formation control strategy.
Key wordsmotion control    reinforcement learning    target tracking    ring-around formation control
收稿日期: 2021-03-12      出版日期: 2023-10-08
ZTFLH:  TP273+.5  
基金资助:国家自然科学基金(61673200)
通讯作者: 杨洪勇(1967),男,山东德州人,博士,教授,主要研究方向为移动多机器人编队控制。   
作者简介: 韩艺琳(1997),女,山东淄博人,硕士研究生,主要研究方向为移动多机器人编队控制。
引用本文:   
韩艺琳, 王丽丽, 杨洪勇, 范之琳. 基于强化学习的多机器人系统的环围编队控制[J]. 复杂系统与复杂性科学, 2023, 20(3): 97-102.
HAN Yilin, WANG Lili, YANG Hongyong, FAN Zhilin. Ring-around Formation Control of Multi-robot Systems Based on Reinforcement Learning. Complex Systems and Complexity Science, 2023, 20(3): 97-102.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.013      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/97
[1] YAN Z, JOUANDEAU N, CHERIF A A. A survey and analysis of multi-robot coordination[J]. International Journal of Advanced Robotic Systems, 2013, 10(12):399.
[2] QU Y, SUN Y, WANG K, et al. Multi-UAV Cooperative Search method for a Moving Target on the Ground or Sea[C] //2019 Chinese Control Conference (CCC). GuangZhou, China: IEEE, 2019: 40494054.
[3] KAMALAPURKAR R, ANDREWS L, WALTERS P, et al. Model-based reinforcement learning for infinite-horizon approximate optimal tracking[J]. IEEE transactions on neural networks and learning systems, 2016, 28(3): 753758.
[4] 路兰,殷水英. 基于空间交互作用的中国省际人口流动模型研究[DB/OL]. (2023-08-08)[2023-08-15].https://link.cnki.net/urlid/11.1115.F.20230808.1339.004.
LU L, YIN S Y. Study on the model of inter-provincial population flow in China based on spatial interaction[DB/OL]. https://link.cnki.net/urlid/11.1115.F.20230808.1339.004.
[5] MOHAN B M, SINHA A. The simplest fuzzy PID controllers: mathematical models and stability analysis[J]. Soft Computing, 2006, 10(10): 961975.
[6] 于欣波,贺威,薛程谦,等.基于扰动观测器的机器人自适应神经网络跟踪控制研究[J].自动化学报, 2019, 45(7):13071324.
YU X B, HE W, XUE C J, et al. Research on robot adaptive neural network tracking control based on disturbance observer [J]. Journal of Automation, 2019,45(7):13071324.
[7] 徐鹏,谢广明,文家燕,等.事件驱动的强化学习多智能体编队控制[J].智能系统学报, 2019,14(1):9398.
XU P, XIE G M, WEN J Y, et al. Event driven reinforcement learning multi-agent formation control [J]. Journal of Intelligent Systems, 2019,14(1):9398.
[8] YU Z, ZHANG Y, LIU Z, et al. Distributed adaptive fractional-order fault-tolerant cooperative control of networked unmanned aerial vehicles via fuzzy neural networks[J]. IET Control Theory & Applications, 2019, 13(17): 29172929.
[9] ZHANG B, SUN X, LIU S, et al. Adaptive differential evolution-based distributed model predictive control for multi-UAV formation flight[J]. International Journal of Aeronautical and Space Sciences, 2020: 21(2):538548.
[10] YIN S, XIAO B. Tracking control of surface ships with disturbance and uncertainties rejection capability[J]. IEEE/ASME Transactions on Mechatronics, 2016, 22(3): 11541162.
[11] ROVEDA L, PALLUCCA G, PEDROCCHI N, et al. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks[J]. IEEE Transactions on Industrial Informatics, 2017, 14(4): 17531763.
[12] GAO S, SONG R, LI Y. Cooperative control of multiple nonholonomic robots for escorting and patrolling mission based on vector field[J]. IEEE Access, 2018, 6: 4188341891.
[13] CHOU C Y, JUANG C F. Navigation of an autonomous wheeled robot in unknown environments based on evolutionary fuzzy control[J]. Inventions, 2018, 3(1): 3.
[14] WANG M, LUO J, YUAN J, et al. Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target[J]. Nonlinear Dynamics, 2018, 92(3): 10231043.
[15] YAO W, LU H, ZENG Z, et al. Distributed static and dynamic circumnavigation control with arbitrary spacings for a heterogeneous multi-robot system[J]. Journal of Intelligent & Robotic Systems, 2019, 94(3): 883905.
[16] LU C, WANG J, CUI X. Moving Target Tracking with Robot Based on Laser Range Finder[C] //2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE). Dalian, China: IEEE, 2020: 2125.
[17] WANG Y, LU D, SUN C Y. Cooperative control for multi-player pursuit-evasion games with reinforcement learning[J]. Neurocomputing, 2020,412:101114
[18] GE H, SONG Y, WU C, et al. Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control[J]. IEEE Access, 2019, 7: 4079740809.
[19] SAMPEDRO C, BAVLE H, Rodriguez-Ramos A, et al. Laser-Based Reactive Navigation for Multirotor Aerial Robots using Deep Reinforcement Learning[C] // 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018.
[20] NOGUCHI Y, MAKI T. Path Planning Method Based on Artificial Potential Field and Reinforcement Learning for Intervention AUVs[C] // 2019 IEEE Symposium on Underwater Technology (UT). Taiwan, China: IEEE, 2019:16.
[1] 陈卓然, 韩定定. 一类交通信息物理系统的动态路径引导[J]. 复杂系统与复杂性科学, 2022, 19(1): 81-87.
[2] 徐泽洲, 曲大义, 洪家乐, 宋晓晨. 智能网联汽车自动驾驶行为决策方法研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 88-94.
[3] 郑振华, 刘其朋. 基于视觉特征提取的强化学习自动驾驶系统[J]. 复杂系统与复杂性科学, 2020, 17(4): 30-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed