Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 18-25    DOI: 10.13306/j.1672-3813.2025.01.003
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于信息熵的超网络重要节点识别方法
涂贵宇, 潘文林, 张天军
云南民族大学 a.数学与计算机科学学院;b.软件工程研究所,昆明 650504
Identification Methods of Important Nodes Based on Information Entropy in Hypernetworks
TU Guiyu, PAN Wenlin, ZHANG Tianjun
a. School of Mathematics and Computer Science; b. Institute of Software Engineering, Yunnan University for Nationalities, Kunming 650504, China
全文: PDF(3837 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对超网络中重要节点识别方法分辨率不足、识别结果不够具体和全面的问题,结合节点度、超度、邻接度和邻接超度利用信息熵公式提出识别超网络重要节点的复合信息熵。该方法设置了可动态调整的影响系数,通过分析节点度、邻接度、节点超度和邻接超度的影响程度,得到每个节点的复合信息熵。其优势在于考虑了节点和邻接节点的影响,且只利用节点的局部属性,致其复杂度较低。仿真实验部分在科研合作超网络和昆明普线公交线路超网络中进行验证。实验结果表明,该方法能有效识别超网络中的重要节点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂贵宇
潘文林
张天军
关键词 超图超网络超度重要节点    
Abstract:In order to solve the problem of low resolution and lack of concrete and comprehensive recognition results of important nodes in hypernetworks, in this paper, combined with the degree of node, degree of transcendence, degree of adjacency and degree of adjacency, the compound information entropy is proposed to identify the important nodes of the hypernetwork. In this method, the influence coefficient is set, and the composite structure entropy of each node is obtained by analyzing the influence degree of degree of node, degree of adjacency, degree of node transcendence and degree of adjacency. Its advantage is that the influence of nodes and adjacent nodes is considered, and only the local attributes of nodes are used, resulting in lower complexity. The simulation experiments are carried out in the research cooperation hypernetwork and Kunming common bus line hypernetwork. Experimental results show that the proposed method can effectively identify the important nodes in the hypernetwork.
Key wordshypergraph    hypernetwork    degree    hyper-degree    entropy    important node
收稿日期: 2023-06-09      出版日期: 2025-04-27
ZTFLH:  G206  
  N94  
通讯作者: 潘文林(1972-),男,怒江泸水人,博士,教授,主要研究方向为智能计算。   
作者简介: 涂贵宇(2002-),女,云南玉溪人,硕士研究生,主要研究方向为智能计算。
引用本文:   
涂贵宇, 潘文林, 张天军. 基于信息熵的超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 18-25.
TU Guiyu, PAN Wenlin, ZHANG Tianjun. Identification Methods of Important Nodes Based on Information Entropy in Hypernetworks[J]. Complex Systems and Complexity Science, 2025, 22(1): 18-25.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.003      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/18
[1] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2):167-256.
[2] KEELING M J, ROHANI P, POURBOHLOUL B. Modeling infectious diseases in humans and animals[J]. Clinical Infectious Diseases,2008,47(6):864-865.
[3] LESKOVEC J, ADAMIC LA, HUBERMAN B A. The dynamics of viral marketing[J].Transactions on the Web,2005,1(1):1-40.
[4] CSERMELY P, KORCSMROS T, KISS H J, et al. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review[J]. Pharmacol Ther,2013,138:333-408.
[5] DOROGOVTSEV S N, MENDES J F F. Evolution of networks[J]. Advances in Physics,2002,51(4):1079-1187.
[6] STROGATZ S H. Exploring complex networks[J]. Nature,2001,410:268-276.
[7] NEUBAUER N,OBERMAYER K.Hyperincident connected components of tagging networks[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia. New York: ACM Press,2009:229-238.
[8] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A,2006,364:581-594.
[9] 王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008:206-222.
[10] 周丽娜,李发旭,巩云超,等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学,2021,18(3):15-22.
ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital based on K-shell in hypernetworks[J].Complex Systems and Complexity Science,2021,18(3):15-22.
[11] 周丽娜,常笑,胡枫.利用邻接结构熵确定超网络关键节点[J].计算机工程与应用,2022,58(8):76-82.
ZHOU L N, CHANG X, HU F. Using adjacent structure to determine vital nodes of hypernetwork[J].Computer Engineering and Applications,2022,58(8):76-82.
[12] ESTRADA E, RODRIGUEZ-VELAZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A,2006,364:581-594.
[13] 胡枫,刘猛,赵静,等.蛋白复合物超网络特性分析及应用[J].复杂系统与复杂性科学,2018,15(4):31-38.
HU F, LIU M, ZHAO J,et al. Analysis and application of the topological properties of protein complex hypernetworks[J].Complex Systems and Complexity Science,2018,15(4):31-38.
[14] 王雨,郭进利.超网络视角下的科研合作网络节点重要性评估[J].图书馆杂志,2018,37(10):91-102.
WANG Y, GUO J L. The evaluation of node importance within the scientific collaboration network from hypernetwork perspective[J].Library Journal, 2018,37(10):91-102.
[15] 单而芳,蔡蕾,曾晗,等.超网络中心性度量的v-Position值方法[J].运筹与管理,2020,29(5):135-142.
SHAN E F, CAI L, ZENG H,et al. The v-position value measure on centrality of hypernetworks[J]. Operations Research and Management Science, 2020,29(5):135-142.
[16] 孙琳,郭进利.基于超网络视角对上海轨道交通网络的研究[J].物流科技,2015,38(4):15-19.
SUN L, GUO J L. Study of Shanghai rail transit network based on the hypernetwork[J].Logistics Management, 2015,38(4):15-19.
[17] 高俊,张科,胡文军,等.基于贡献矩阵的超网络关键节点评估方法[J].电子设计工程,2023,31(7):10-15.
GAO J,ZHANG K,HU W J, et al. Evaluation method of key nodes in hypernetwork based on contribution matrix[J]. Electronic Design Engineering,2023,31(7):10-15.
[18] 袁广,孔德文,孙立山,等.超网络视角下的城市交通枢纽重要度判别方法研究[J].公路交通科技,2023,40(1):192-199.
YUAN G,KONG D W,SUN L S, et al. Study on method for discriminating importance of urban transport hub from perspective of super network[J]. Highway Transportation Technology, 2023,40(1):192-199.
[19] FEI L,DENG Y.A new method to identify influential nodes based on relative entropy[J].Chaos, Solitons and Fractals,2017,104:257-267.
[20] 黄丽亚,霍宥良,王青,等.基于K-阶结构熵的网络异构性研究[J].物理学报,2019,68(1):347-359.
HUANG L Y,HUO Y L,WANG Q, et al. Network heterogeneity based on K- order structure entropy[J].Acta Physica Sinica,2019,68(1):347-359.
[21] 胡钢,徐翔,高浩,等.基于邻接信息熵的网络节点重要性识别算法[J].系统工程理论与实践,2020,40(3):714-725.
HU G,XU X,GAO H, et al. Node importance recognition algorithm based on adjacency information entropy in networks[J].Systems Engineering-Theory & Practice,2020,40(3):714-725.
[22] 汪送,王瑛,冯建伟,等.基于约束熵的复杂系统重要节点崩溃控制研究[J].中国安全科学学报,2012,22(5):10-16.
WANG S,WANG Y,FENG J W, et al. Complex system important node collapse control based on constraint entropy[J].Chinese Journal of Safety Science, 2012,22(5):10-16.
[23] 闫蓉,高光来.基于强度熵的中文关键词识别方法[J].计算机工程与科学,2016,38(11):2356-2361.
YAN R,GAO G L. Chinese keywords identification based on strength entropy[J]. Computer Engineering and Science, 2016,38(11):2356-2361.
[24] 陈俊华,边宅安,李慧嘉,等.基于相对熵的节点影响力测量方法[J].计算机科学,2018,45(S2):292-298.
CHEN J H,BIAN A Z,LI J H, et al. Measuring method of node influence based on relative entropy[J]. Computer Science,2018,45(S2):292-298.
[25] 李懂,席景科,孙成成.融合度与K核迭代次数的节点重要性排序算法[J].计算机工程与设计,2019,40(6):1518-1522,1539.
LI D,XI J K,SUN C C. Node importance ranking algorithm with fusing degree and K-shell iteration number[J].Computer Engineering and Design,2019,40(6):1518-1522,1539.
[26] BERGE C. Graphs and Hypergraphs[M].New York:Elsevier,1973.
[27] 马涛,索琪.基于超图的超网络研究综述[J].运筹与管理,2021,30(2):232-239.
MA T, SUO Q. Review of hypernetwork based on hypergraph[J].Operations Research and Management Science,2021,30(2):232-239.
[1] 王振, 叶春明, 郭健全. 不确定需求下考虑激励相容的两级再制造供应链研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 104-112.
[2] 陈伟杰, 汤玉秀, 张涛. 环境信用监管下相关主体策略行为的随机演化分析[J]. 复杂系统与复杂性科学, 2025, 22(1): 113-122.
[3] 张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
[4] 徐凤, 尹嘉男, 杨文东, 贾萌. 航班延误扰动下空铁联运超网络可靠性分析[J]. 复杂系统与复杂性科学, 2025, 22(1): 50-58.
[5] 丁旭艳, 江登英, 尹圆圆, 饶从军. 基于熵和双向投影的区间毕达哥拉斯模糊决策[J]. 复杂系统与复杂性科学, 2025, 22(1): 88-96.
[6] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[7] 何宇, 田杰鑫, 覃朝晖, 陈珍珍. 基于生产网络视角的中国产业链韧性测度研究[J]. 复杂系统与复杂性科学, 2024, 21(4): 21-27.
[8] 廖阳, 孟豪南, 李迎峰, 李思卿. 需求变动视角下虚拟养老服务人员调度研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 144-153.
[9] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[10] 吴洁, 谢小东, 盛永祥, 桂亮. 创新联合体潜在合作伙伴选择研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 104-111.
[11] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[12] 李雪岩, 张同宇, 祝歆. 基于深度强化学习的通勤走廊韧性恢复双层规划[J]. 复杂系统与复杂性科学, 2024, 21(1): 92-99.
[13] 汪瑜, 雷迪, 于娇娇, 温国兵. 网络视角下航空公司竞争态势及影响因素研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 66-73.
[14] 洪成, 蒋沅, 严玉为, 余荣斌, 杨松青. 基于层间邻域信息熵的时序网络节点重要性评估方法[J]. 复杂系统与复杂性科学, 2024, 21(1): 20-27.
[15] 胡博仁, 裴忠民, 罗章凯, 丁杰. 基于含时网络数据的卫星网络模体识别方法研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed