Abstract:In order to solve the problem of low resolution and lack of concrete and comprehensive recognition results of important nodes in hypernetworks, in this paper, combined with the degree of node, degree of transcendence, degree of adjacency and degree of adjacency, the compound information entropy is proposed to identify the important nodes of the hypernetwork. In this method, the influence coefficient is set, and the composite structure entropy of each node is obtained by analyzing the influence degree of degree of node, degree of adjacency, degree of node transcendence and degree of adjacency. Its advantage is that the influence of nodes and adjacent nodes is considered, and only the local attributes of nodes are used, resulting in lower complexity. The simulation experiments are carried out in the research cooperation hypernetwork and Kunming common bus line hypernetwork. Experimental results show that the proposed method can effectively identify the important nodes in the hypernetwork.
涂贵宇, 潘文林, 张天军. 基于信息熵的超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 18-25.
TU Guiyu, PAN Wenlin, ZHANG Tianjun. Identification Methods of Important Nodes Based on Information Entropy in Hypernetworks[J]. Complex Systems and Complexity Science, 2025, 22(1): 18-25.
[1] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review,2003,45(2):167-256. [2] KEELING M J, ROHANI P, POURBOHLOUL B. Modeling infectious diseases in humans and animals[J]. Clinical Infectious Diseases,2008,47(6):864-865. [3] LESKOVEC J, ADAMIC LA, HUBERMAN B A. The dynamics of viral marketing[J].Transactions on the Web,2005,1(1):1-40. [4] CSERMELY P, KORCSMROS T, KISS H J, et al. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review[J]. Pharmacol Ther,2013,138:333-408. [5] DOROGOVTSEV S N, MENDES J F F. Evolution of networks[J]. Advances in Physics,2002,51(4):1079-1187. [6] STROGATZ S H. Exploring complex networks[J]. Nature,2001,410:268-276. [7] NEUBAUER N,OBERMAYER K.Hyperincident connected components of tagging networks[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia. New York: ACM Press,2009:229-238. [8] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A,2006,364:581-594. [9] 王志平,王众托.超网络理论及其应用[M].北京:科学出版社,2008:206-222. [10] 周丽娜,李发旭,巩云超,等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学,2021,18(3):15-22. ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital based on K-shell in hypernetworks[J].Complex Systems and Complexity Science,2021,18(3):15-22. [11] 周丽娜,常笑,胡枫.利用邻接结构熵确定超网络关键节点[J].计算机工程与应用,2022,58(8):76-82. ZHOU L N, CHANG X, HU F. Using adjacent structure to determine vital nodes of hypernetwork[J].Computer Engineering and Applications,2022,58(8):76-82. [12] ESTRADA E, RODRIGUEZ-VELAZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A,2006,364:581-594. [13] 胡枫,刘猛,赵静,等.蛋白复合物超网络特性分析及应用[J].复杂系统与复杂性科学,2018,15(4):31-38. HU F, LIU M, ZHAO J,et al. Analysis and application of the topological properties of protein complex hypernetworks[J].Complex Systems and Complexity Science,2018,15(4):31-38. [14] 王雨,郭进利.超网络视角下的科研合作网络节点重要性评估[J].图书馆杂志,2018,37(10):91-102. WANG Y, GUO J L. The evaluation of node importance within the scientific collaboration network from hypernetwork perspective[J].Library Journal, 2018,37(10):91-102. [15] 单而芳,蔡蕾,曾晗,等.超网络中心性度量的v-Position值方法[J].运筹与管理,2020,29(5):135-142. SHAN E F, CAI L, ZENG H,et al. The v-position value measure on centrality of hypernetworks[J]. Operations Research and Management Science, 2020,29(5):135-142. [16] 孙琳,郭进利.基于超网络视角对上海轨道交通网络的研究[J].物流科技,2015,38(4):15-19. SUN L, GUO J L. Study of Shanghai rail transit network based on the hypernetwork[J].Logistics Management, 2015,38(4):15-19. [17] 高俊,张科,胡文军,等.基于贡献矩阵的超网络关键节点评估方法[J].电子设计工程,2023,31(7):10-15. GAO J,ZHANG K,HU W J, et al. Evaluation method of key nodes in hypernetwork based on contribution matrix[J]. Electronic Design Engineering,2023,31(7):10-15. [18] 袁广,孔德文,孙立山,等.超网络视角下的城市交通枢纽重要度判别方法研究[J].公路交通科技,2023,40(1):192-199. YUAN G,KONG D W,SUN L S, et al. Study on method for discriminating importance of urban transport hub from perspective of super network[J]. Highway Transportation Technology, 2023,40(1):192-199. [19] FEI L,DENG Y.A new method to identify influential nodes based on relative entropy[J].Chaos, Solitons and Fractals,2017,104:257-267. [20] 黄丽亚,霍宥良,王青,等.基于K-阶结构熵的网络异构性研究[J].物理学报,2019,68(1):347-359. HUANG L Y,HUO Y L,WANG Q, et al. Network heterogeneity based on K- order structure entropy[J].Acta Physica Sinica,2019,68(1):347-359. [21] 胡钢,徐翔,高浩,等.基于邻接信息熵的网络节点重要性识别算法[J].系统工程理论与实践,2020,40(3):714-725. HU G,XU X,GAO H, et al. Node importance recognition algorithm based on adjacency information entropy in networks[J].Systems Engineering-Theory & Practice,2020,40(3):714-725. [22] 汪送,王瑛,冯建伟,等.基于约束熵的复杂系统重要节点崩溃控制研究[J].中国安全科学学报,2012,22(5):10-16. WANG S,WANG Y,FENG J W, et al. Complex system important node collapse control based on constraint entropy[J].Chinese Journal of Safety Science, 2012,22(5):10-16. [23] 闫蓉,高光来.基于强度熵的中文关键词识别方法[J].计算机工程与科学,2016,38(11):2356-2361. YAN R,GAO G L. Chinese keywords identification based on strength entropy[J]. Computer Engineering and Science, 2016,38(11):2356-2361. [24] 陈俊华,边宅安,李慧嘉,等.基于相对熵的节点影响力测量方法[J].计算机科学,2018,45(S2):292-298. CHEN J H,BIAN A Z,LI J H, et al. Measuring method of node influence based on relative entropy[J]. Computer Science,2018,45(S2):292-298. [25] 李懂,席景科,孙成成.融合度与K核迭代次数的节点重要性排序算法[J].计算机工程与设计,2019,40(6):1518-1522,1539. LI D,XI J K,SUN C C. Node importance ranking algorithm with fusing degree and K-shell iteration number[J].Computer Engineering and Design,2019,40(6):1518-1522,1539. [26] BERGE C. Graphs and Hypergraphs[M].New York:Elsevier,1973. [27] 马涛,索琪.基于超图的超网络研究综述[J].运筹与管理,2021,30(2):232-239. MA T, SUO Q. Review of hypernetwork based on hypergraph[J].Operations Research and Management Science,2021,30(2):232-239.