Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 145-150    DOI: 10.13306/j.1672-3813.2025.02.018
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于最小引力路径的异构多智能体聚类的隐私保护
王彩鑫1, 杨洪勇2, 王丽丽2
1.烟台职业学院信息工程系,山东 烟台 264670;
2.鲁东大学信息与电气程学院,山东 烟台 264025
Privacy Protection for Heterogeneous Multi-agent System Clustering Based on Least Gravitational Pathway
WANG Caixin1, YANG Hongyong2, WANG Lili2
1. Depatrment of Information Engineering, Yantai Vocational College, Yantai 264670, China;
2. School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
全文: PDF(2612 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对异构多智能体系统无法完成聚类的现象,提出基于最小引力路径的异构多智能体系统聚类的隐私保护。引入差分隐私保护拉普拉斯噪声,保护智能体系统信息隐私性;提出感知密度算法,提高对初始中心智能体选取的适应能力;构建引力模型,利用Dijkstra算法计算最小引力路径,确保所有智能体能够被分配到相应组别。实验表明,该算法成功完成异构多智能体系统的聚类分析,同时保障了智能体数据的统计特性,实现了隐私保护。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王彩鑫
杨洪勇
王丽丽
关键词 异构多智能体系统隐私保护感知密度算法跟随聚类算法    
Abstract:Aiming at the phenomenon that heterogeneous multi-intelligent body systems cannot complete clustering, privacy protection for clustering of heterogeneous multi-intelligent body systems based on the minimum gravitational path is proposed. The differential privacy-preserving Laplace noise is introduced to protect the information privacy of the intelligent body system; the perceptual density algorithm is proposed to improve the adaptability to the initial center intelligent body selection; the gravitational model is constructed, and the Dijkstra algorithm is used to compute the minimum gravitational path, which ensures that all the intelligences can be assigned to the corresponding groups. Experiments show that the algorithm successfully completes the clustering analysis of the heterogeneous multi-intelligent body system, and at the same time guarantees the statistical characteristics of the intelligent body data and realizes the privacy protection.
Key wordsheterogeneous multi-agent systems    privacy protection    perceptual density algorithm    following clustering algorithm
收稿日期: 2023-08-01      出版日期: 2025-06-03
ZTFLH:  TB309  
基金资助:国家自然科学基金(61673200);山东省自然科学基金(ZR2022MF231)
通讯作者: 杨洪勇(1967),男,山东德州人,博士,教授,主要研究方向为多智能体系统聚类。   
作者简介: 王彩鑫(1999),女,山东临沂人,硕士研究生,主要研究方向为多智能体系统聚类。
引用本文:   
王彩鑫, 杨洪勇, 王丽丽. 基于最小引力路径的异构多智能体聚类的隐私保护[J]. 复杂系统与复杂性科学, 2025, 22(2): 145-150.
WANG Caixin, YANG Hongyong, WANG Lili. Privacy Protection for Heterogeneous Multi-agent System Clustering Based on Least Gravitational Pathway[J]. Complex Systems and Complexity Science, 2025, 22(2): 145-150.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.018      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/145
[1] 韩艺琳,王丽丽,杨洪勇,等.基于强化学习的多机器人系统的环围编队控制[J]. 复杂系统与复杂性科学,2023,20(3): 97102.
HAN Y L, WANG L L, YANG H Y,et al. Reinforcement learning-based ring-around formation control for multi-robot systems[J]. Complex Systems and Complexity Science,2023,20(3): 97102.
[2] 孙玉娇,杨洪勇,于美妍.基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学,2020,17(4): 6672+84.
SUN Y J, YANG H Y, YU M Y. Research on finite time coherent control of multi-robot system based on pilot following[J]. Complex Systems and Complexity Science,2020,17(4): 6672+84.
[3] 邓云生,张纪会.基于分组选择的可调聚类网络中个体的合作行为研究[J]. 复杂系统与复杂性科学,2022,19(2): 3944.
DENG Y S, ZHANG J H. A study of cooperative behavior of individuals in adjustable clustering networks based on group selection[J]. Complex Systems and Complexity Science,2022,19(2): 3944.
[4] 闫安,宋运忠.离散事件系统中的攻击检测和修复[J]. 复杂系统与复杂性科学,2022,19(4): 99106.
YAN A, SONG Y Z. Attack detection and repair in discrete event systems[J]. Complex Systems and Complexity Science, 2022,19(4): 99106.
[5] 王淑良,陈辰,张建华,等.基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学,2022,19(4): 4754.
WANG S L, CHEN C, ZHANG J H, et al. Complex network-based toughness analysis of associated public transportation systems[J]. Complex Systems and Complexity Science,2022,19(4): 4754.
[6] 周湘贞,李帅,隋栋.数据驱动下基于量子人工蜂群的K均值聚类算法优化[J]. 南京理工大学学报,2023,47(2): 199206.
ZHOU X Z, LI S, SUI D. Data-driven optimization of K-mean clustering algorithm based on quantum artificial bee colony[J]. Journal of Nanjing University of Science and Technology,2023,47(2): 199206.
[7] 沈郭鑫,蒋中云.基于密度和中心指标的Canopy二分K均值算法优化[J]. 计算机工程与科学,2022,44(2): 372380.
SHEN G X, JIANG Z Y. Optimization of Canopy bisection K-means algorithm based on density and center metrics[J]. Computer Engineering and Science,2022,44(2): 372380.
[8] 梅婕,魏圆圆,许桃胜.基于密度峰值多起始中心的融合聚类算法[J]. 计算机工程与应用,2021,57(22): 7885.
MEI J, WEI Y Y, XU T S. Fusion clustering algorithm based on density peak multiple starting centers[J]. Computer Engineering and Applications,2021,57(22): 7885.
[9] 蒋华,季丰,王慧娇,等.改进Kmeans算法的海洋数据异常检测[J]. 计算机工程与设计,2018,39(10): 31323136.
JIANG F, JI F, WANG H J, et al. Improved Kmeans algorithm for marine data anomaly detection[J]. Computer Engineering and Design,2018,39(10): 31323136.
[10] 贾瑞玉,李玉功.类簇数目和初始中心点自确定的K-means算法[J]. 计算机工程与应用,2018,54(7): 152158.
JIA R Y, LI Y G. K-means algorithm for self-determination of the number of class clusters and initial centroids[J]. Computer Engineering and Applications,2018,54(7): 152158.
[11] DWORK C. Differential privacy: a survey of results[C]//The proceedings of the 5th International Conference on Theory and Applications of Models of Computation. Berlin, Heidelberg: Springer, 2008, 4978: 119.
[12] 刘刚,杨雯莉,王同礼,等.基于云联邦的差分隐私保护动态推荐模型[J]. 信息网络安全,2023,23(7): 3143.
LLU G, YANG W L, WANG T L, et al. A dynamic recommendation model for differential privacy preservation based on cloud federation[J]. Information Network Security,2023,23(7): 3143.
[13] 江欣俞,李晓会,秦若婷,等.基于图神经网络的兴趣点推荐的隐私保护框架[J]. 科学技术与工程,2023,23(17): 74077419.
JIANG X Y, LI X H, QIN R T, et al. A privacy-preserving framework for point-of-interest recommendation based on graph neural networks[J]. Science, Technology and Engineering,2023,23(17): 74077419.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed