Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 154-160    DOI: 10.13306/j.1672-3813.2025.04.020
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
带有网络故障的混沌系统自适应滑模容错控制
罗孙逍宇1, 朱柯欣1, 陈天智1, 赵福钰2,3, 赵谅1
1.青岛大学自动化学院,山东 青岛 266071;
2.山东明源智能装备股份有限公司,山东 枣庄 277400;
3.山东科技大学电气与自动化工程学院,山东 青岛 266590
Adaptive Sliding Mode Fault-tolerant Control for Chaotic Systems with Network Faults
LUO Sunxiaoyu1, ZHU Kexin1, CHEN Tianzhi1, ZHAO Fuyu2,3, ZHAO Liang1
1. College of Automation, Qingdao University, Qingdao 266071, China;
2. Shandong Mingyuan Intelligent Equipment Co, LTD, Zaozhuang 277400, China;
3. College of Electrical Engineering and Automation, Shandong University of Science and Technology,Qingdao 266590, China
全文: PDF(1519 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了更好地解决对混沌系统的鲁棒容错控制和同步问题,针对一类具有信号衰减、网络退化、非线性耦合特性的混沌系统,提出了一种新的自适应滑模控制策略。以此为前提,提出一种用于混沌同步的积分滑动流形,进而设计了自适应律以估计控制增益,并利用更新后的控制增益和积分增益构造自适应滑模控制器。基于李雅普诺夫稳定性理论,证明了该控制器能保证带有故障和摄动耦合的混沌系统的渐近同步。通过仿真实验,验证了该方法的有效性和适用性,为混沌系统的鲁棒容错控制和同步问题的解决提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗孙逍宇
朱柯欣
陈天智
赵福钰
赵谅
关键词 容错控制自适滑模控制非线性系统网络故障    
Abstract:A novel adaptive sliding mode control strategy is proposed for a class of chaotic systems with the signal attenuation, network degradation, and nonlinear coupling characteristics, to solve the problem of robust fault-tolerant control and synchronization of chaotic systems. An integral sliding manifold for chaotic synchronization is presented, and an adaptive law is designed to estimate the control gain, and the updated control gain and integral gain are used to construct an adaptive sliding mode controller. Based on the Lyapunov stability theory, it is proved that the designed controller can ensure the asymptotic synchronization of chaotic systems with faults and perturbed couplings. The effectiveness and applicability of the proposed method are verified by the numerical simulation, which provides a new idea for the robust fault-tolerant control and synchronization of chaotic systems.
Key wordsfault tolerant control    adaptive sliding mode control    nonlinear system    network faults
收稿日期: 2023-10-06      出版日期: 2025-12-10
ZTFLH:  TP13  
  TP18  
基金资助:山东省博士后创新人才支持计划(SDBX2022014);山东省自然科学基金(ZR2023QF017,ZR2022QF057,ZR2022LZH001,ZR2024MF138);国家自然科学基金(62303284、62273213);青岛市科技计划青年项目(2321124zyydjch);博士后基金(ZXQT20220610001);山东省高校青年创新科技计划(2022KJ301)
通讯作者: 赵福钰(1989),男,山东济南人,博士,主要研究方向为自适应最优控制和容错控制。   
作者简介: 罗孙逍宇(2000),男,湖北襄阳人,硕士研究生,主要研究方向为自适应最优控制。
引用本文:   
罗孙逍宇, 朱柯欣, 陈天智, 赵福钰, 赵谅. 带有网络故障的混沌系统自适应滑模容错控制[J]. 复杂系统与复杂性科学, 2025, 22(4): 154-160.
LUO Sunxiaoyu, ZHU Kexin, CHEN Tianzhi, ZHAO Fuyu, ZHAO Liang. Adaptive Sliding Mode Fault-tolerant Control for Chaotic Systems with Network Faults[J]. Complex Systems and Complexity Science, 2025, 22(4): 154-160.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.020      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/154
[1] ARENAS A, DIAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008,469: 93153.
[2] LEE S M, CHOI S J, WON S C. Synchronization for chaotic Lur’e systems with sector restricted nonlinearities via delayed feedback control[J]. Nonlinear Dynamics, 2010, 9: 277288.
[3] LEE T H, WU Z G, PARK J H. Synchronization of a complex dynamical network with coupling time-varying delays via sampled-data control[J]. Applied Mathematics and Computation, 2012, 219(3): 13541366.
[4] ZHOU J, WANG Q. Convergence speed in distributed consensus over dynamically switching random networks[J]. Automatica, 2009, 45(6): 14551461.
[5] JIN X Z, YANG G H. Adaptive synchronization of a class of uncertain complex networks against network deterioration[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(6): 13961409.
[6] JIN X Z, YANG G H. Robust adaptive synchronization of uncertain and delayed dynamical complex networks with faulty network[J]. Chinese Physics B, 2010, 19(8): 080508.
[7] JIN X Z, YANG G H, CHE W W. Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 13451355.
[8] SONG Q. Synchronization analysis in an array of asymmetric neural networks with time-varying delays and nonlinear coupling[J]. Applied Mathematics and Computation, 2010, 216(5): 16051613.
[9] LIU X, CHEN T. Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 381: 8292.
[10] WANG Z, WANG Y, LIU Y. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays[J]. IEEE Transactions on Neural Networks, 2009, 21(1): 1125.
[11] ZHOU J, LU J, LU J. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Transactions on Automatic Control, 2006, 51(4): 652656.
[12] LI Z, CHEN G. Robust adaptive synchronization of uncertain dynamical networks[J]. Physics Letters A,2004,324(2/3): 166178.
[13] XU Y, ZHOU W, SUN W. Adaptive synchronization of uncertain chaotic systems with adaptive scaling function[J]. Journal of the Franklin Institute, 2011, 348(9): 24062416.
[14] LIU T, ZHAO J, HILL D J. Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes[J]. Chaos, Solitons & Fractals, 2009, 40(3): 15061519.
[15] BIAN Q, YAO H. Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 40894098.
[16] JI D H, PARK J H, WON S C. Master-slave synchronization of Lur'e systems with sector and slope restricted nonlinearities[J]. Physics Letters A, 2009, 373(11): 10441050.
[17] LEE T H, PARK J H, LEE S M, et al. Robust synchronisation of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control[J] , International Journal of Control, 2013, 86: 107119.
[18] BOWONG S, KAKMENI F M M. Synchronization of uncertain chaotic systems via backstepping approach[J]. Chaos, Solitons & Fractals, 2004, 21(4): 9991011.
[19] AZEMI A, YAZ E E. Sliding-mode adaptive observer approach to chaotic synchronization[J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(4): 758765.
[20] YAU H T. Design of adaptive sliding mode controller for chaos synchronization with uncertainties[J]. Chaos, Solitons & Fractals, 2004, 22(2): 341347.
[21] YANG C C. Synchronization of second-order chaotic systems via adaptive terminal sliding mode control with input nonlinearity[J]. Journal of the Franklin Institute, 2012, 349(6): 20192032.
[22] KARIMI H R. A sliding mode approach to H synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties[J]. Journal of the Franklin Institute, 2012, 349(4): 14801496.
[23] LI J, LI W, LI Q. Sliding mode control for uncertain chaotic systems with input nonlinearity[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 341348.
[24] ZRIBI M, SMAOUI N, SALIM H. Synchronization of the unified chaotic systems using a sliding mode controller[J]. Chaos, Solitons & Fractals, 2009, 42(5): 31973209.
[25] JIANG B, GAO Z, SHI P, et al. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2010, 18: 10001007.
[26] YANG G H, YE D. Reliable Control of Linear Systems With Adaptive Mechanism[J]. IEEE Transactions on Automatic Control, 2009, 55(1): 242247.
[27] KAR S, MOURA J M E. Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise[J]. IEEE Transactions on Signal Processing, 2009, 59: 355369.
[28] JIN X Z, YANG G H, CHE W W. Adaptive synchronization of master-slave large-scale systems against bias actuators and network attenuations[J]. International Journal of Control, Automation and Systems, 2012, 10(6): 11021110.
[29] IOANNOU P A, SUN J. Robust adaptive control[M]. Upper Saddle River, NJ: PTR Prentice-Hall, 1996.
[30] LANGBORT C, CHANDRA R S, DANDREA R. Distributed control design for systems interconnected over an arbitrary graph[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 15021519.
[31] 闫安,宋运忠,离散事件系统中的攻击检测和修复[J]. 复杂系统与复杂性科学, 2020, 19(4) : 99106.
YAN A, SONG Y Z. Atack detection and repair in discrete event systems[J]. Complex Systems and Complexity Science, 2020, 8(2) : 99106.
[32] 陈佳音,刘国军,复杂动态网络容错同步控制研究[J]. 复杂系统与复杂性科学, 2020, 19(3) : 5664.
CHEN J Y, LIU G J. Fault gtolerant synchronization control for complex dynamical networks[J]. Complex Systems and Complexity Science, 2020, 19(3) : 5664.
[1] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[2] 于美妍, 杨洪勇, 孙玉娇. 基于Backstepping的三轮机器人编队控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 28-34.
[3] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 66-72.
[4] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed