Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 72-79    DOI: 10.13306/j.1672-3813.2022.04.010
  本期目录 | 过刊浏览 | 高级检索 |
非线性耦合多智能体系统组编队跟踪控制
杜向阳1, 李伟勋1, 陈增强2, 张利民3
1.天津职业技术师范大学理学院,天津 300222;
2.南开大学人工智能学院,天津 300350;
3.中原工学院电子信息学院,郑州 451191
Group Formation Tracking Control of Nonlinear Coupled Multi-agent Systems
DU Xiangyang1, LI Weixun1, CHEN Zengqiang2, ZHANG Limin3
1. School of Science, Tianjin University of Technology and Education, Tianjin 300222, China;
2. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
3. School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China
全文: PDF(2207 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究非线性和双积分器耦合领导跟随多智能体系统的组编队控制问题,在处理多智能体系统的分组时,没有基于传统的保守假设(从一个组中的每个节点到其他组中的所有节点的相邻权值之和为零或其他常数),设计了一种新的控制协议。根据李雅普诺夫稳定性理论和代数图论,分别给出了双积分和非线性器二阶多智能体系统的组编队控制问题的充分条件,使得多智能体系统能够达到期望的几何结构并随着时间维持下去。最后,用两个数值仿真的例子验证了所得结论的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜向阳
李伟勋
陈增强
张利民
关键词 多智能体系统组编队控制非线性系统双积分器系统无向拓扑    
Abstract:This paper studies the group formation control problem of nonlinear and two-integrator coupling leading the following multi-agent systems. In dealing with the grouping of multi-agent systems, a new control protocol is designed, which does not based on the conventional conservative assumption that the sum of adjacent weights of all nodes from each node in one group to all nodes in the other group is zero or another constant. Then, based on Lyapunov stability theory and algebraic graph theory, sufficient conditions for formation control problems of nonlinear and double integrator second-order multi-agent systems are given respectively. So that the agents in the multi-agent system can reach and maintain the designed formation over time. Finally, two numerical simulations are presented to verify the effectiveness of the results.
Key wordsmulti-agent system    group formation control    nonlinear system    double integrator system    undirected topology
收稿日期: 2021-09-30      出版日期: 2023-01-09
ZTFLH:  TP273  
基金资助:国家自然科学基金(11901435);河南省重点研发与推广专项项目(212102210497)
通讯作者: 李伟勋(1984),男,江西南昌人,博士,副教授,主要研究方向为多智能体系统协调控制。   
作者简介: 杜向阳(1998),男,河南信阳人,硕士研究生,主要研究方向为多智能体协调控制方面的研究。
引用本文:   
杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
DU Xiangyang, LI Weixun, CHEN Zengqiang, ZHANG Limin. Group Formation Tracking Control of Nonlinear Coupled Multi-agent Systems. Complex Systems and Complexity Science, 2022, 19(4): 72-79.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.010      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/72
[1] REN W, BEARD R W. Consensus seeking in multi-agent systems under dynamically changing interactional topologies[J]. IEEE Transactional on Automatic Control, 2005, 50(5): 655661.
[2] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 5259.
ZHANG W, JI Z J, QU J J. Controllability of multi-agent systems based on leader symmetry[J]. Complex Systems and Complexity Science, 2019, 16 (2): 5259.
[3] 李勃, 陈增强, 刘忠信, 等. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2):105110.
LI B, CHEN Z Q, LIU Z X, et al. Containment control for multi-agent system with multiple stationary leaders and time-delays [J]. Complex Systems and Complexity Science, 2016, 13(2):105110.
[4] HONG Y G, HU J P, GAO L X. Tracking control for multi-agent consensus with an active leader and variable topology[J]. IEEE Trans on Automatic Control, 2006, 42(7): 11771182.
[5] 孙玉娇,杨洪勇,于美妍. 基于领航跟随的 多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学,2020,17(4):6672.
SUN Y J, YANG H Y, YU M Y. The finite time consistency control of multi-robot systems based on leader-following[J]. Complex Systems and Complexity Science, 2020, 17(4):6672.
[6] HU Q L, DONG H Y, ZHANG Y M, et al. Tracking control of spacecraft formation flying with collision avoidance[J]. Aerospace Science and Technology, 2015, 42: 353364.
[7] LI W X, CHEN Z Q, LIU Z X. Leader-following formation control for second-order multi-agent systems with time-varying delay and nonlinear dynamics[J]. Nonlinear Dynamics, 2013, 72(4):803812.
[8] LIN Z Y, DING W, YAN G F, et al. Leader-follower formation via complex Laplacian[J]. Automatica, 2013, 49(6): 19001916.
[9] BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions of Control System Technology, 2001, 9(6): 777790.
[10] YU J Y, WANG L. Group consensus in multi-agent systems with switching topologies and communication delays[J]. Systems and Control Letters, 2010, 59(6): 340348.
[11] HU H X, YU L, ZHANG W A, et al. Group consensus in multi-agent systems with hybrid protocol[J]. Journal of the Franklin Institute, 2013, 350: 575597.
[12] TAN C, LIU G P, DUAN G R. Group consensus of networked multi-agent systems with directed topology[J]. IFAC Proceeding Volumes, 2011, 44(1): 88788883.
[13] XIE D M, LIU Q L, LÜ L F, et al. Necessary and sufficient condition for the group consensus of multi-agent systems[J]. Applied Mathematics and Computation, 2014, 243: 870878.
[14] JI L H, LIU Q, LIAO X F. On reaching group consensus for linearly coupled multi-agent networks[J]. Information Sciences, 2014, 287: 112.
[15] YAO C, LU J H, HAN F L, et al. On the cluster consensus of discrete-time multi-agent systems[J]. Systems & Control Letters, 2011, 60(7): 517523.
[16] LUO X Y, LI S B, GUAN X P. Flocking algorithm with multi-target tracking for multi-agent systems[J]. Pattern Recognition Letters, 2010, 31(9): 800805.
[17] HAN T, GUAN Z H, CHI M, et al. Multi-formation control of nonlinear leader-following multi-agent systems[J]. ISA Transactions, 2017, 69: 140147.
[18] SONG Q, CAO J D, YU W W. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control [J]. Systems & Control Letters, 2010, 59(9): 553562.
[19] YU W W, CHEN G R, CAO M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[J]. Automatica, 2010, 46(6):10891095.
[20] DU H B, CHENG Y Y, He Y G, et al. Second-order consensus for nonlinear leader-following multi-agent systems via dynamic output feedback control[J]. International Journal of Robust Nonlinear Control, 2016, 26(2): 329344.
[21] WANG Y, MA Z J. Lag consensus of the second-order leader-following multi-agent systems with nonlinear dynamics[J]. Neurocomputing, 2016, 171:8288.
[22] WILKINSON J H. The Algebraic Eigenvalue Problem [M]. London: Oxford University Press, 1965.
[23] WANG Y Y, XIE L H, SOUZA C E. Robust control of a class of uncertain nonlinear systems[J]. Systems & Control Letters, 1992, 19(2): 139149.
[1] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[2] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[3] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[4] 于美妍, 杨洪勇, 孙玉娇. 基于Backstepping的三轮机器人编队控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 28-34.
[5] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[6] 孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 66-72.
[7] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[8] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[9] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[10] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed