Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (4): 89-98    DOI: 10.13306/j.1672-3813.2025.04.012
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Agent建模的海上反无人集群作战效能分析研究
樊辉锦1, 陈青华2, 巫银花1
1.海军指挥学院,江苏 南京 210018;
2.海军航空大学,山东 烟台 264001
Operational Effectiveness Analysis of Maritime Counter Unmanned Cluster Based on Agent Modeling
FAN Huijin1, CHEN Qinghua2, WU Yinhua1
1. Naval Command College,Nanjing 210018;
2. Naval Aviation University,Yantai 264001
全文: PDF(4407 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究联合作战背景下的海上反无人集群作战效能,采用作战Agent建模方法开展战役级海上作战效能分析研究。围绕海上反无人集群作战,设计了作战Agent的建模流程和基本结构,从效能指标体系建立、个体Agent建模和主要状态变迁等方面构建了反无人集群作战效能模型,并给出关键Agent的内在机理模型。设计了具体作战想定和基于Anylogic的作战仿真实验系统,检验建模方法的有效性、可行性、优越性。结果表明,建模方法能够较好地支撑海上反无人集群作战效能的分析与评估,得出作战效能关键影响因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊辉锦
陈青华
巫银花
关键词 Agent建模反无人集群作战效能分析作战仿真    
Abstract:In order to study the operational effectiveness of maritime counter unmanned cluster under the background of joint operation, the operational agent modeling method is adopted to carry out the analysis and research on the operational effectiveness. Focusing on the maritime counter unmanned cluster operation the modeling process and basic structure of combat agent are designed, and the counter unmanned cluster operational effectiveness model is constructed from the establishment of the effectiveness index system, individual agent modeling and main state change, and the intrinsic mechanism model of key agents is given. A specific operational design and a operational simulation experiment system based on Anylogic are designed to examine the effectiveness, feasibility and superiority of the modeling method. The results show that the modeling method can better support the analysis and assessment of maritime counter unmanned cluster operational effectiveness, and derive the key influencing factors of combat effectiveness.
Key wordsagent modeling    counter unmanned clusters    operational effectiveness analysis    operational simulation
收稿日期: 2023-10-13      出版日期: 2025-12-10
ZTFLH:  N945  
  E823  
基金资助:全军军事类研究生资助课题(2021JSXXX9)
通讯作者: 陈青华(1979),女,山东泰安人,博士,副教授,主要研究方向为复杂系统建模,指挥信息系统建设。   
作者简介: 樊辉锦(1994),男,山西洪洞人,博士,助理工程师,主要研究方向为海上作战运筹、复杂系统建模。
引用本文:   
樊辉锦, 陈青华, 巫银花. 基于Agent建模的海上反无人集群作战效能分析研究[J]. 复杂系统与复杂性科学, 2025, 22(4): 89-98.
FAN Huijin, CHEN Qinghua, WU Yinhua. Operational Effectiveness Analysis of Maritime Counter Unmanned Cluster Based on Agent Modeling[J]. Complex Systems and Complexity Science, 2025, 22(4): 89-98.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.04.012      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I4/89
[1] 陈嘉勋,肖兵,刘凤增. 基于Agent的建模与仿真技术在军事系统中的应用综述[J]. 飞航导弹, 2019(8): 7176.
CHEN J X, XIAO B, LIU F Z. A review of agent-based modeling and simulation techniques in military systems[J]. Aerodynamic Missile Journal, 2019(8): 7176.
[2] 庞毅,孙青林,焦纲领, 等. 基于多Agent的舰艇编队对海攻击仿真系统[J]. 系统工程与电子技术, 2015, 37(10): 23962403.
PANG Y,SUN Q L,JIAO G L, et al. Warship formation anti-sea attack simulation system based on multi-agent[J]. Systems Engineering and Electronics, 2015, 37(10): 23962403.
[3] 蒲玮,李雄. 基于Agent行动图的作战建模方法[J]. 系统工程与电子技术, 2017, 39(4): 795805.
PU W,LI X. Research on warfare modeling method based on agent action diagrams[J]. Systems Engineering and Electronics, 2017, 39(4): 795805.
[4] 韩明磊,马晶,周泽宇, 等. 基于Agent建模的海战场杀伤链评估系统研究[J]. 计算机仿真, 2022, 39(3): 1116.
HAN M L,MA J,ZHOU Z Y, et al. Research on assessment system of kill chain in naval battlefield based on agent modeling[J]. Computer Simulation, 2022, 39(3): 1116.
[5] 冯进,朱江,沈寿林. 一种基于分层智能混合决策的多Agent框架[J]. 火力与指挥控制, 2017, 42(1): 3639.
FENG J,ZHU J,SHEN S L, A hybrid agent architecture based on hierarchical intelligence[J]. Fire control & Command Control, 2017, 42(1): 3639.
[6] 赵柱,王毅,樊芮锋, 等. 基于多主体NetLogo平台的反无人机OODA体系对抗建模[J]. 系统仿真学报, 2021, 33(8): 17911800.
ZHAO Z,WANG Y,FAN R F, et al. Modeling on anti-UAV system-of-systems combat OODA loop based on NetLogo[J]. Journal of System Simulation, 2021, 33(8): 17911800.
[7] 段晓君,林益, 赵城利. 系统科学教程[M]. 北京: 科学出版社, 2019.
[8] 许瑞明. 无人机集群作战涌现机理及优化思路研究[J]. 军事运筹与系统工程, 2018, 32(2): 1417.
XU R M.Research on emergence mechanism and optimization idea of UAV swarm operation[J]. Military Operations Research and Systems Engineering, 2018, 32(2): 1417.
[9] 屈强,何新华,刘中晅. 系统涌现的要素和动力学机制[J]. 系统科学学报, 2017, 25(3): 2529.
QU Q,HE X H,LIU Z H. Essential factors and dynamic mechanism of the system emergence[J]. Journal of Systems Science, 2017, 25(3): 2529.
[10] 肖宗豪,张鹏,迟文升, 等. 基于Agent与元胞自动机的无人机集群混合式控制[J]. 北京航空航天大学学报, 2021, 47(11): 23442359.
XIAO Z H,ZHANG P,CHI W S, et al. Hybrid control for UAV swarms based on agent and cellular automata[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 23442359.
[11] 邵太华,陈洪辉,舒振, 等. 面向无人作战指挥控制的任务智能解析技术[J]. 指挥与控制学报, 2021, 7(2): 146152.
SHAO T H,CHEN H H,SHU Z, et al. Mission intelligent parsing for unmanned combat command and control[J]. Journal of Command and Control, 2021, 7(2): 146152.
[12] 许瑞明. 无人机集群智能的生成样式研究[J]. 现代防御技术, 2020, 48(5): 4449.
XU R M. Research on generation style of uav cluster intelligence[J]. Modern Defence Technology, 2020, 48(5): 4449.
[13] Department of the navy unmanned campaign framework[R]. Department of the Navy, 2021.
[14] FUENTES G. Pacific battle problem tests expanded use of networked autonomous warships[EB/OL].[20230620].https://news.usni.org/2023/05/16/pacific-battle-problem-tests-expanded-use-of-networked-autonomous-warships, 2023.
[15] 刘冠邦,张昕,徐小峰. 美军海战场无人机作战运用发展与启示[C]. 第九届中国指挥控制大会论文集. 北京: 中国指挥与控制学会,2021.
LIU G B,ZHANG X,XU X F. Development and enlightenment of us military naval battlefiled UAV operation application[C]. The 9th China Conference on Command and Control. Beijing: CICC, 2021.
[16] 石剑琛. 无人系统在未来海战场中的应用构想[J]. 舰船电子工程, 2017, 37(12): 58, 58.
SHI J C. Conception of unmanned system and application in future sea war field[J]. Ship Electronic Engineering, 2017, 37(12): 58, 58.
[17] 金士尧,任传俊,黄红兵. 复杂系统涌现与基于整体论的多智能体分析[J]. 计算机工程与科学, 2010, 32(3): 16.
JIN S R,REN C J,HANG H B. Emergence of complex systems and the multi-agent analysis based on holism[J]. Computer Engineering & Science, 2010, 32(3): 16.
[18] 屈强,何新华,陆皖麟. 基于f散度的复杂系统涌现度量方法[J]. 装甲兵工程学院学报, 2017, 31(3): 106110.
QU Q,HE X H,LU W L. A new approach to measure the emergence of complex system based on f-divergence[J]. Journal of Academy of Armored Force Engineering, 2017, 31(3): 106110.
[19] 金士尧,黄红兵,任传俊. 基于复杂性科学基本概念的MAS涌现性量化研究[J]. 计算机学报, 2009, 32(1): 1729.
JIN S R,HUANG H B,REN C J. Emergence-oriented research on MAS with quantifications based on the notions in science of complexity[J]. Chinese Journal of Computers, 2009, 32(1): 1729.
[20] 柳强,何明,刘锦涛, 等. 无人机“蜂群”的蜂拥涌现行为识别与抑制机理[J]. 电子学报, 2019, 47(2): 374381.
LIU Q,HE M,LIU J T, et al. A mechanism for ldentifying and suppressing the emergent flocking behaviors of UAV swarms[J]. Acta Electronica Sinica, 2019, 47(2): 374381.
[21] 许瑞明. 无人机集群智能涌现与演化建模论述[J]. 兵工自动化, 2021, 40(3): 59.
XU R M. Discussion on intelligent emergence and evolution modeling of UAV cluster[J]. Ordnance Industry Automation, 2021, 40(3): 59.
[22] AIR LAND SEA APPLICATION CENTER. Operation assessment: multi-service tactics, techniques, and procedures for operation assessment[EB/OL].[20230606]. http://www.sjzzbkj.com/view_ed634o8qn3y2lqq0.html.
[1] 赵旭, 金奥岚, 胡斌. 基于观点动力学的水库移民文化适应机制研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 39-50.
[2] 蒲玮, 李雄. 基于能力组件的作战仿真Agent模块化结构设计[J]. 复杂系统与复杂性科学, 2017, 14(3): 45-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed