Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 10-16    DOI: 10.13306/j.1672-3813.2026.01.002
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于传播模型的加权有向网络评估算法
张禧若, 廖元, 彭佳琴, 杨宇航, 黄丽亚
南京邮电大学a.电子与光学工程学院;b.柔性电子(未来技术)学院,南京 210023
Weighted Directed Network Evaluation Algorithm Based on Propagation Model
ZHANG Xiruo, LIAO Yuan, PENG Jiaqin, YANG Yuhang, HUANG Liya
a. College of Electronic and Optical Engineering; b. College of Flexible Electronics(future technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
全文: PDF(2368 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了对现实生活中存在的大量加权有向网络进行节点重要性研究,基于传播模型构建了一种加权有向网络的节点评估算法,即交叉K-阶传播数算法(CKPN算法)。该方法从局部和全局角度分析节点信息,调整了有向网络的出入度贡献分配,综合考察不同传播阶数下的节点影响力。采用ARPA网络、WSIR模型和蓄意攻击模型验证其有效性。结果表明,CKPN算法考虑信息全面,评价结果细致,在大规模网络中效果良好。与传统算法相比,CKPN算法更加精确且应用更加广泛。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张禧若
廖元
彭佳琴
杨宇航
黄丽亚
关键词 加权有向网络节点重要性传播模型    
Abstract:To investigate node importance in the extensive weighted directed networks in real-world scenarios, this paper proposes the Cross K-Propagation Number (CKPN) algorithm, which is a node evaluation algorithm for weighted directed networks based on propagation models. This algorithm analyzes node information from both local and global perspectives, examines the interaction between nodes under different propagation orders and adjusts the contribution allocation of the in-degree and out-degree in the directed network. ARPA network, WSIR model and deliberate attack model are used to verify the effectiveness of the proposed method. The results show that the CKPN algorithm considers the information comprehensively and the evaluation results are detailed. It has good effect in large-scale networks and is more accurate than the traditional algorithm that only considers the network topology.
Key wordsdirected power network    node importance    propagation model
收稿日期: 2024-03-11      出版日期: 2026-02-13
ZTFLH:  TB301.5  
  N94  
基金资助:国家自然科学基金(61977039)
通讯作者: 黄丽亚(1972-),女,湖南绥宁人,博士,教授,主要研究方向为脑网络与脑机接口。   
作者简介: 张禧若(2000-),女,江苏扬州人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
张禧若, 廖元, 彭佳琴, 杨宇航, 黄丽亚. 基于传播模型的加权有向网络评估算法[J]. 复杂系统与复杂性科学, 2026, 23(1): 10-16.
ZHANG Xiruo, LIAO Yuan, PENG Jiaqin, YANG Yuhang, HUANG Liya. Weighted Directed Network Evaluation Algorithm Based on Propagation Model[J]. Complex Systems and Complexity Science, 2026, 23(1): 10-16.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.002      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/10
[1] 王淑良,陈辰,张建华,等.基于复杂网络的关联公共交通系统韧性分析[J].复杂系统与复杂性科学,2022,19(4):47-54.
WANG S L, CHEN C, ZHANG J H, et al. Resilience analysis of public interdependent transport system based on complex network[J]. Complex Systems and Complexity Science, 2022, 19(4):47-54.
[2] 王小俊,王彬,夏一丹,等.基于介中心性及K-shell的脑网络核心节点评价方法[J].计算机工程与应用,2017,53(11):44-49.
WANG X J, WANG B, XIA Y D, et al.Evaluation method of node centrality for brain network based on betweenness centrality and K-shell[J]. Computer Engineering and Applications, 2017, 53(11):44-49.
[3] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1(3):215-239.
[4] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1):35-41.
[5] SABIDUSSI G. The centrality index of a graph[J]. Psychometrika, 1966, 31(4):581-603.
[6] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888-893.
[7] 吴英晗,李明达,胡枫.基于熵的多属性决策超网络重要节点识别方法[J].复杂系统与复杂性科学, 2023, 20(4):40-46.
WU Y H, LI M D, HU F.A. Multi-attribute decision making method based on entropy to identify important nodes in hypernetworks[J]. Complex Systems and Complexity Science, 2023, 20(4):40-46.
[8] KLEINBERG J M. Authoritative sources in a hyperlinked environment[J]. Journal of the Association for Computing Machinery, 1999, 46(5):604-632.
[9] DONG C, XU G, MENG L, et al. CPR-TOPSIS: a novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy[J]. Physica A: Statistical Mechanics and Its Applications, 2022(603):127797.
[10] 王班,马润年,王刚,等.改进的加权网络节点重要性评估的互信息方法[J].计算机应用, 2015, 35(7):1820-1823.
WANG B, MA R N, WANG G, et al. Improved evaluation method for node importance based on mutual information in weighted networks[J]. Journal of Computer Applications, 2015, 35(7):1820-1823.
[11] 王雨,郭进利.基于多重影响力矩阵的有向加权网络节点重要性评估方法[J].物理学报, 2017, 66(5):050201.
WANG Y, GUO J L. Evaluation method of node importance in directed-weighted complex network based on multiple influence matrix[J]. Acta Physica Sinica, 2017, 66(5):050201.
[12] PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking: bringing order to the web[J]. World Wide Web, 1999, 2(1):107-117.
[13] 潘伟丰,李兵,马于涛,等.基于加权PageRank算法的关键包识别方法[J].电子学报, 2014, 42(11):2174-2183.
PAN W F, LI B, MA Y T, et al. Identifying the key packages using weighted pagerank algorithm[J]. Acta Electronica Sinica, 2014, 42(11):2174 -2183.
[14] XU X, ZHU C, WANG Q Y, et al. Identifying vital nodes in complex networks by adjacency information[J]. Scientific Reports, 2020(10):2619.
[15] XU X, ZHU X Q, HUANG X Q, et al. Node importance evaluation of multi-level directed weighted network based on ISM and SH combination model[C]. International Conference on Informatics, Networking and Computing, 2022(10):69-75.
[16] 黄丽亚,汤平川,霍宥良,等.基于加权K-阶传播数的节点重要性[J].物理学报, 2019, 68(12):128901.
HUANG L Y, TANG P C, HUO Y L, et al. Node importance based on the weighted K-order propagation number algorithm[J]. Acta Physica Sinica, 2019, 68(12):128901.
[17] 周立欣,刘臣,霍良安,等.基于交叉度的有向网络中心节点识别算法研究[J].计算机应用研究, 2016, 33(11):3299-3306.
ZHOU L X, LIU C, HUO L A, et al. Identification algorithms of center node in directed complex networks based on cross degree[J]. Application Research of Computers, 2016, 33(11):3299-3306.
[18] HU P, FAN W L, MEI S W. Identifying node importance in complex networks[J]. Physica A, 2015(429):169-176.
[19] GARAS A, ARGYRAKIS P, ROZENBLAT C, et al. Worldwide spreading of economic crisis[J]. New Journal of Physics, 2010, 12(11):113043.
[20] KNIGHT W R. A computer method for calculating kendall′s tau with ungrouped data [J]. Journal of the American Statistical Association, 1966, 61(314):436-439.
[21] SADE D S. Linkages and cliques in grooming matrices[J]. Folia Primatologica, 1972, 18(3/4):196-223.
[22] COLEMAN J S. Introduction to Mathematical Sociology[M]. London: London Free Press Glencoe, 1972.
[23] FREEMAN L C, WEBSTER C M, KIRKE D M. Exploring social structure using dynamic three-dimensional color images[J]. Social Networks, 1988, 20(2):109-118.
[24] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393:440-442.
[25] JAMES M. Peer Influence groups: identifying dense clusters in large networks[J]. Social Networks, 2001, 23(4):261-283.
[26] YANG G Z, QI X G, LIU L F. Research on network robustness based on different deliberate attack methods[J]. Physica A, 2022(545):123588.
[27] WHITE J G, SOUTHGATE E, THOMSON J N, et al. Factors that determine connectivity in the nervous system of Caenorhabditis elegans[J]. Cold Spring Harb Symp Quant Biol, 1983, 48:633-640.
[1] 丁学君, 洪野, 田勇. 考虑促谣及辟谣的在线社交网络谣言传播模型[J]. 复杂系统与复杂性科学, 2025, 22(4): 46-54.
[2] 罗旭航, 祝清意, 刘煜杭. 两类非线性WSI计算机病毒传播模型[J]. 复杂系统与复杂性科学, 2025, 22(1): 59-66.
[3] 杨忠保, 刘泽山, 潘春燕, 张大林. 修正SEIQRDP传播模型的构建与分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 34-41.
[4] 洪成, 蒋沅, 严玉为, 余荣斌, 杨松青. 基于层间邻域信息熵的时序网络节点重要性评估方法[J]. 复杂系统与复杂性科学, 2024, 21(1): 20-27.
[5] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
[6] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[7] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[8] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed