Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 59-66    DOI: 10.13306/j.1672-3813.2025.01.008
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
两类非线性WSI计算机病毒传播模型
罗旭航, 祝清意, 刘煜杭
重庆邮电大学网络空间安全与信息法学院,重庆 400065
Two Types of Nonlinear WSI Computer Virus Propagation Models
LUO Xuhang, ZHU Qingyi, LIU Yuhang
School of Cyber Security and Information Law, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
全文: PDF(4137 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑到计算机网络结构以及计算机病毒传播情况对用户意识的影响,建立了两类复杂网络(包括同质网络和异质网络)中具有非线性感染率的WSI(Weakly-protected Strongly-protected Infected)计算机病毒传播模型。分别计算了两类传播模型的平衡点和基本再生数,给出了稳定性证明。最后通过数值仿真实验验证了两类模型的稳定性,分析了非线性感染率对计算机病毒传播的影响,以及将两类模型的计算机病毒传播情况和基本再生数进行对比,发现网络的异质性能加剧计算机病毒传播。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗旭航
祝清意
刘煜杭
关键词 计算机病毒传播模型网络结构非线性感染率用户意识    
Abstract:Considering the influence of computer network structure and the effect of computer virus propagation on user awareness, two WSI (Weakly-protected Strongly-protected Infected) computer virus propagation models with nonlinear infection rate in two types of complex networks (including homogeneous and heterogeneous networks) are developed. The equilibrium points and basic regeneration numbers of the two types of propagation models are given respectively, together with stability proofs. Finally, numerical simulation experiments are conducted to verify the stability of the two types of models and to analyze the effect of nonlinear infection rates on the spread of computer viruses, as well as to compare the spread of computer viruses from the two types of models with the basic regeneration numbers and we can find that the heterogeneity of networks can exacerbate the spread of computer viruses.
Key wordscomputer virus    propagation model    network structure    nonlinear infection rate    user awareness
收稿日期: 2023-06-20      出版日期: 2025-04-27
ZTFLH:  TP393.0  
  O29  
基金资助:国家自然科学基金青年项目(61903056)
通讯作者: 祝清意(1987-),男,四川广安人,博士,副教授,主要研究方向为网络安全,计算机病毒传播学。   
作者简介: 罗旭航(1997-),男,重庆开州人,硕士研究生,主要研究方向为网络传播动力学。
引用本文:   
罗旭航, 祝清意, 刘煜杭. 两类非线性WSI计算机病毒传播模型[J]. 复杂系统与复杂性科学, 2025, 22(1): 59-66.
LUO Xuhang, ZHU Qingyi, LIU Yuhang. Two Types of Nonlinear WSI Computer Virus Propagation Models[J]. Complex Systems and Complexity Science, 2025, 22(1): 59-66.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.008      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/59
[1] 傅建明, 彭国军, 张焕国. 计算机病毒分析与对抗[M]. 武汉: 武汉大学出版社, 2009: 1.
[2] 北京安盟信息技术股份有限公司. 美石油管道遭勒索攻击一周年-如何看待我国油化行业安全[EB/OL]. (2022-05-07) [2023-06-05]. https://www.gongkong.com/article/202206/100456.html.
Beijing Security Union It.,Ltd. One year since ransom attack on US oil pipeline-How to view the security of our oil and chemical industry[EB/OL]. (2022-05-07) [2023-06-05]. https://www.gongkong.com/article/202206/100456.html.
[3] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2):29-37.
ZHU M C, BIN S, SUN G X. Construction and research of infectious disease model based on COVID-19 transmission characteristics[J]. Complex Systems and Complexity Science, 2023, 20(2):29-37.
[4] 王俊岭, 罗智荣, 郭翠芳, 等. 动态演化SEIRS网络病毒传播模型和控制[J]. 计算机仿真, 2022, 39(8): 383-388.
WANG J L, LUO Z R, GUO C F, et al. Dynamically evolving SEIRS network virus propagation model and control[J]. Computer Simulation, 2022, 39(8): 383-388.
[5] 李映岐, 姬伟峰, 翁江, 等. 异构备份网络的病毒传播模型及稳定性分析[J]. 计算机应用, 2023, 43(4): 1176-1182.
LI Y Q, JI W F, WENG J, et al. Virus propagation model and stability analysis of heterogeneous backup network[J]. Journal of Computer Applications, 2023, 43(4): 1176-1182.
[6] REY A M. Mathematical modeling of the propagation of malware: a review[J]. Security and Communication Networks, 2015, 8(15): 2561-2579.
[7] LIU W P, LIU C, LIU X Y, et al. Modeling the spread of malware with the influence of heterogeneous immunization[J]. Applied Mathematical Modelling, 2016, 40(4): 3141-3152.
[8] AL-TUWAIRQI S M, BAHASHWAN W S. A dynamic model of viruses with the effect of removable media on a computer network with heterogeneous immunity[J]. Advance in Difference Equations, 2020(1): 260.
[9] ZHU Q Y, LUO X H, LIU Y H. Modeling and analysis of the spread of malware with the influence of user awareness[J]. Complexity, 2021, 2021: 6639632.
[10] ZHANG W S, WANG Z C, ZHANG Z Z, et al. Delay effect on a malware propagation model incorporating user awareness[C]. International Conference on Cyber-Physical Social Intelligence. Nanjing, China, 2022: 555-560.
[11] WANG H Y, WANG J, SMALL M, et al. Review mechanism promotes knowledge transmission in complex networks[J]. Applied Mathematics and Computation, 2019, 340: 113-125.
[12] GUAN G, GUO Z Y. Stability behavior of a two-susceptibility SHIR epidemic model with time delay in complex networks[J]. Nonlinear Dynamics, 2021, 106(1): 1083-1110.
[13] ZHU L H, GUAN G. Dynamical analysis of a rumor spreading model with self-discrimination and time delay in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 533: 121953.
[14] LIU W P, LIU C, YANG Z, et al. Modeling the propagation of mobile malware on complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 37: 249-264.
[15] HUANG S Y. Global dynamics of a network-based WSIS model for mobile malware propagation over complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 503: 293-303.
[16] LIU W P, ZHONG S M. Modeling and analyzing the dynamic spreading of epidemic malware by a network eigenvalue method[J]. Applied Mathematical Modelling, 2018, 63:491-507.
[17] WANG R L, XUE Y K. Stability analysis and optimal control of worm propagation model with saturated incidence rate[J]. Computers & Security, 2023, 125: 103063.
[18] WANG R L, XUE Y K, XUE K L. Dynamic analysis and optimal control of worm propagation model with saturated incidence rate[J]. Frontiers in Physics, 2023, 10: 1338.
[19] ZHANG Z Z, UPADHYAY R K, ZHAO T. Delay-induced hopf bifurcation of an SVEIR computer virus model with nonlinear incidence rate[J]. Advances in Difference Equations, 2018, 2018: 256.
[20] MADHUSUDANAN V, GEETHA R. Dynamics of epidemic computer virus spreading model with delays[J]. Wireless Personal Communications, 2020, 115(3): 2047-2061.
[21] 宋玉蓉, 鲍裕霖, 李汝琦. 意识扩散和SEIR病毒的双层网络传播模型[J]. 系统仿真学报, 2022, 34(11):2437-2447.
SONG Y R, BAO Y L, LI R Q. Diffusion of consciousness and a two-layer network propagation model of SEIR epidemic[J]. Journal of System Simulation, 2022, 34(11):2437-2447.
[22] ZHU H M, YAN X, JIN Z. Knowledge transmission model in the multiplex networks with consideration of online and offline channels[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106186.
[1] 杨忠保, 刘泽山, 潘春燕, 张大林. 修正SEIQRDP传播模型的构建与分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 34-41.
[2] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[3] 索琪, 王梓豪, 王文哲. 电子信息产业协同创新网络时空演化分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 40-46.
[4] 李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
[5] 李培哲, 菅利荣. 网络结构、知识基础与企业创新绩效[J]. 复杂系统与复杂性科学, 2022, 19(2): 31-38.
[6] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[7] 傅杰, 邹艳丽, 谢蓉. 结合网络动力学的电网关键节点识别[J]. 复杂系统与复杂性科学, 2017, 14(2): 31-38.
[8] 周静, 袁瑛, 涂平. 中国电影圈主要导演和演员合作网络的结构特征分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed