Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 31-38    DOI: 10.13306/j.1672-3813.2017.02.005
  本期目录 | 过刊浏览 | 高级检索 |
结合网络动力学的电网关键节点识别
傅杰, 邹艳丽, 谢蓉
广西师范大学电子工程学院,广西 桂林 541004
Identification of Critical Nodes in a Power Network with Considering the Network Dynamics
FU Jie, ZOU Yanli, XIE Rong
College of Electronic Engineering, Guangxi Normal University, The Guangxi Zhuang Autonomous Region Guilin 541004, China
全文: PDF(1216 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了有效发掘出网络中的重要环节,提出了一种综合网络结构和节点动力学的电网关键节点识别方法,该方法结合两种已有的节点重要性评价指标——度中心性和接近中心性,同时定义和网络动力学相关的两个指标——临界同步耦合强度和失同步扩散时间。综合考虑4种性能指标的影响来确定节点的重要性,克服了单一评价指标的片面性,可以得到比使用单一评价指标更为准确的节点重要性评价结果。在IEEE14和IEEE57节点系统上进行仿真测试,实验结果验证了方法的合理性和有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
傅杰
邹艳丽
谢蓉
关键词 网络结构动力学电网关键节点同步临界耦合强度失同步扩散时间    
Abstract:In this paper, in order to effectively discover the important links in a network, a method of identifying critical nodes in a power network is proposed, which is based on the network structure and the node dynamics. This method combines two kinds of existing node importance evaluation indicators, which are the degree centrality and the closeness centrality, at the same time, defines two evaluation indicators considering the network dynamics. The importance of a node is determined by comprehensive considering the influence of four kinds of evaluation indicators, which overcomes the one sidedness of single evaluation indicator, can get the more accurate node importance evaluation result than using single evaluation indicator. Simulation test on IEEE14 and IEEE57 node systems verifies the rationality and effectiveness of the proposed method.
Key wordsnetwork structure    dynamics    power networks    critical nodes    synchronous critical coupling strength    synchronous diffusion time
收稿日期: 2016-05-25      出版日期: 2025-02-25
ZTFLH:  TM711  
基金资助:国家自然科学基金(11562003);广西多源信息挖掘与安全重点实验室系统性研究课题基金(13-A-02-03);广西研究生教育创新计划项目资助课题(YCSZ2014098)
通讯作者: 邹艳丽(1972-),女,博士,教授,主要研究方向为非线性电路系统的混沌控制与同步、复杂网络的控制与同步。   
作者简介: 傅杰(1991-),男,湖南岳阳人,硕士研究生,主研方向为复杂网络理论及其应用。
引用本文:   
傅杰, 邹艳丽, 谢蓉. 结合网络动力学的电网关键节点识别[J]. 复杂系统与复杂性科学, 2017, 14(2): 31-38.
FU Jie, ZOU Yanli, XIE Rong. Identification of Critical Nodes in a Power Network with Considering the Network Dynamics[J]. Complex Systems and Complexity Science, 2017, 14(2): 31-38.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.005      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/31
[1] Pagani G A, Aiello M. From the grid to the smart grid, topologically[J].Physica A: Statistical Mechanics and its Applications, 2016, 449: 160-175.
[2] 王光增, 曹一家, 包哲静,等. 一种新型电力网络局域世界演化模型[J].物理学报, 2009, 6: 3597-3602.
Wang Guangzeng, Cao Yijia, Bao Zhejing, et al. A novel local-world evolving network model for power grids[J].Chinese Journal of Physics, 2009, 6: 3597-3602.
[3] Conti J P. The day the samba stopped[power blackouts] [J].Engineering and Technology, 2010, 5(4): 46-47.
[4] Bhangu N S, Singh R, Pahuja G L. Reliability centred maintenance in a thermal power plant: a case study[J].International Journal of Productivity and Quality Management. 2011, 7(2): 209-228.
[5] Park J W, Seol W C. Considerations for severe accident management under extended station blackout conditions in nuclear power plants[J].Progress in Nuclear Energy, 2016, 88: 245-256.
[6] Aguiar A S, Lamego Simoes Filho F F, Alvim A C M, et al. Station blackout in unit 1 and analysis of the wind field in the region of Angra dos Reis[J].Annals of Nuclear Energy. 2015, 78: 93-103.
[7] Watanabe T, Ishigaki M, Hirano M. Analysis of BWR long-term station blackout accident using TRAC-BF1[J].Annals of Nuclear Energy 2012, 49: 223-226.
[8] Zeng B, Ouyang S, Zhang J, et al. An analysis of previous blackouts in the world: lessons for China′s power industry[J].Renewable and Sustainable Energy Reviews, 2015, 42: 1151-1163.
[9] 林伟芳, 汤涌, 孙华东,等. 巴西“2.4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化, 2011, 35(9): 1-5.
Lin Weifang, Tang Yong, Sun Huadong, et al. Brazil “2.4” blackout accident and its implications for power system security and stability operation[J].Automation of Electric Power System, 2011, 35(9): 1-5.
[10] 汤涌, 卜广全, 易俊. 印度“7.30”、 “7.31”大停电事故分析及启示[J].中国电机工程学报, 2012, 32(25): 167-174.
Tang Yong, Bu Guangquan, Yi Jun. India “7.30” and “7.31” blackout accident analysis and revelation[J].Proceedings of the CSEE, 2012, 32(25): 167-174.
[11] Hu J T, Du Y X, Mo H M, et al. A modified weighted TOPSIS to identify influential nodes in complex networks[J].Physica A: Statistical Mechanics and Its Applications, 2016, 444: 73-85.
[12] Mo H M, Gao C, Deng Y. Evidential method to identify influential nodes in complex networks[J].Journal of Systems Engineering & Electro-nics, 2015, 26(2): 381-387.
[13] Zhao J, Yu L, Li J R, et al. Identifying influential nodes based on graph signal processing in complex networks[J].Chinese Physics B, 2015, 24(5): 58904-58913.
[14] Zhang T P, Fang B, Liang X Y. A novel measure to identify influential nodes in complex networks based on network global efficiency[J].Modern Physics Letters B, 2015, 29(28): 1550168.
[15] Du Y, Gaoa C, Hub Y, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J].Phys A, 2014, 399: 57-69.
[16] 刘彬, 王文吉, 李雅倩,等. 基于能量因素的无线传感器网络关键节点判定算法[J].电子与信息学报, 2014, 36(7): 1728-1734.
Liu Bin, Wang Wenji, Li Yaqian, et al. Key nodes decision algorithm for wireless sensor networks based on energy factor[J].Journal of Electronics & Information Technology, 2014, 36(7): 1728-1734.
[17] 张喜平, 李永树, 刘刚,等. 节点重要度贡献的复杂网络节点重要度评估方法[J].复杂系统与复杂性科学, 2014, 11(3): 26-32.
Zhang Xiping, Li Yongshu, Liu Gang, et al. Evaluation method of complex network node importance based on node importance contribution[J].Complex Systems and Complexity Science, 2014, 11(3): 26-32.
[18] 肖卫东, 谭文堂, 葛斌,等. 网络节点重要度的快速评估方法[J].系统工程理论与实践, 2013, 33(7): 1898-1904.
Xiao Weidong, Tan Wentang, Ge Bin, et al. A fast evaluation method for the importance of network nodes[J].Systems Engineering-Theory & Practice, 2013, 33(7): 1898-1904.
[19] 许立雄, 刘俊勇, 刘洋,等. 节点重要度的分类综合评估[J].中国电机工程学报, 2014, 34(10): 1609-1617.
Xu Lixiong, Liu Junyong, Liu Yang, et al. Classification and synthesis evaluation of node importance[J].Proceedings of the CSEE, 2014, 34(10): 1609-1617.
[20] 鞠文云, 李银红. 基于最大流传输贡献度的电力网关键线路和节点辨识[J].电力系统自动化, 2012, 36(9): 6-12.
Ju Wenyun, Li Yinhong. Key lines and nodes identification of power network based on maximum transmission contribution degree[J].Automation of Electric Power Systems, 2012, 36(9): 6-12.
[21] 于会, 刘尊, 李勇军. 基于多属性决策的复杂网络节点重要性综合评价方法[J].物理学报, 2013, 2(12): 1-8.
Yu Hui, Liu Zun, Li Yongjun. Comprehensive evaluation method of complex network node importance based on multi attribute decision making[J].Chinese Journal of Physics, 2013, 2(12): 1-8.
[22] Filatrella G, Nielsen A H, Pedersen N F. Analysis of a power grid using a kuramoto-like model[J].European Physical Journal. B, 2008, 61(4): 485-491.
[1] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[2] 梁婵娟, 邹艳丽, 吴克祥, 邵贝贝. 基于双层网络频率控制的分布式风电并网研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 28-34.
[3] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
[4] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[5] 袁亮, 祁煜智, 何伟军, 李闻钦, 吴霞. 跨国界河流水资源冲突演化博弈模拟研究[J]. 复杂系统与复杂性科学, 2023, 20(3): 90-96.
[6] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
[7] 郭淑慧, 吕欣. 网络直播大数据:统计特征与时序规律挖掘[J]. 复杂系统与复杂性科学, 2023, 20(2): 1-9.
[8] 闫少辉, 顾斌贤, 宋震龙, 施万林. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 43-51.
[9] 王佳亮, 李海滨, 李海燕. 基于复杂网络的新冠病毒群体免疫数值仿真[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
[10] 潘弘杰, 范宏. 考虑网络结构的影子银行与银行系统稳定性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 41-48.
[11] 索琪, 王梓豪, 王文哲. 电子信息产业协同创新网络时空演化分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 40-46.
[12] 吕恩胜. 改进的混沌反控制设计及在图像加密中的应用[J]. 复杂系统与复杂性科学, 2022, 19(4): 91-98.
[13] 王一伊, 卜凡亮. 涉恐个体极端思想演化双阈值观点动力学模型[J]. 复杂系统与复杂性科学, 2022, 19(4): 55-63.
[14] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[15] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed