Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 45-52    DOI: 10.13306/j.1672-3813.2026.01.006
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于元网络模型的危险品运输事故致因分析
任翠萍, 张佳倩
西安邮电大学现代邮政学院,西安 710061
Causation Analysis for Hazardous Materials Transportation Accident Based on Meta-network Model
REN Cuiping, ZHANG Jiaqian
School of Modern Posts, Xi’an University of Posts and Telecommunications,Xi’an 710061, China
全文: PDF(1695 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为揭示危险品运输事故关键因素及因素间的结构关系,采用元网络模型,结合危险品道路运输特点,建立以人员、行为、后果、组织、环境和事件为要素的节点体系。以浙江温岭“6.13”液化石油气运输槽罐车重大爆炸事故为例,构建危险品运输事故致因网络,分析网络的结构特征与打击策略。研究发现,危险品运输事故致因网络呈现稀疏网络的特性;以紧密中心性为参考指标的重点打击效果最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任翠萍
张佳倩
关键词 安全管理危险品运输事故致因元网络模型    
Abstract:In order to reveal the key factors of hazardous materials transportation accidents and the structural relationship between factors, a new node system is established with agent, behavior, consequence, organization, environment and event as elements, using the meta-network model, combined with the characteristics of hazardous materials road transportation. Taking the major transportation explosion accident of ‘6.13’liquefied petroleum gas tank truck in Wenling, Zhejiang Province as an example, constructed the meta-network of hazardous materials transportation accidents and analyzed the structural characteristics and strike strategies of the network. It is found that the network of hazardous materials transportation accidents presents the characteristics of sparse network. The key strike effect with the closeness centrality is the best.
Key wordssafety management    hazardous materials transportation    accident causation    meta-network model
收稿日期: 2023-10-24      出版日期: 2026-02-13
ZTFLH:  X928  
  N94  
基金资助:国家自然科学基金青年基金(52102418)
通讯作者: 张佳倩(2001-),女,陕西渭南人,硕士研究生,主要研究方向为危险品运输安全监管。   
作者简介: 任翠萍(1987-),女,河北沧州人,博士,副教授,主要研究方向为危险品运输与复杂网络。
引用本文:   
任翠萍, 张佳倩. 基于元网络模型的危险品运输事故致因分析[J]. 复杂系统与复杂性科学, 2026, 23(1): 45-52.
REN Cuiping, ZHANG Jiaqian. Causation Analysis for Hazardous Materials Transportation Accident Based on Meta-network Model[J]. Complex Systems and Complexity Science, 2026, 23(1): 45-52.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.006      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/45
[1] 王亚晴,杨涛.2016~2021年我国危险化学品事故统计分析[J].山东化工,2022,51(14):168-171.
WANG Y Q, YANG T. Statistical analysis of hazardous chemicals accidents in China from 2016 to 2021[J]. Shandong Chemical Industry, 2022,51 (14):168-171.
[2] 吴宗之,孙猛.200起危险化学品公路运输事故的统计分析及对策研究[J].中国安全生产科学技术,2006(2):3-8.
WU Z Z, SUN M. Statistic analysis and countermeasure study on 200 road transportation accidents of dangerous chemicals[J]. Journal of Safety Science and Technology,2006 (2):3-8.
[3] ZHU S X, ZHANG S W, LANG H, et al. The situation of hazardous materials accidents during road transportation in China from 2013 to 2019[J]. International Journal of Environmental Research and Public Health, 2022,19(15): 9632.
[4] 曹建,施式亮,鲁义,等.2013—2018年罐车公路运输危化品事故分析[J].中国安全科学学报,2020, 30(2):119-126.
CAO J, SHI S L, LU Y, et al. Analysis on tank transportation accidents of hazardous chemicals from 2013 to 2018[J]. China Safety Science Journal, 2020,30(2): 119-126.
[5] WU Y L, FU G, HAN M, et al. Comparison of the theoretical elements and application characteristics of STAMP, FRAM, and 24Model: a major hazardous chemical transportation explosion accident[J]. Journal of Loss Prevention in the Process Industries, 2022(80):104880.
[6] LEVESON A. A new accident model for engineering safer system[J]. Safety Science,2004,42(4): 237-270.
[7] LI X W, LIU T Z, LIU Y K. Cause analysis of unsafe behaviors in hazardous chemical accidents: combined with HFACs and Bayesian network[J]. International Journal of Environmental Research & Public Health, 2020, 17(1): 1-11.
[8] 张玥,帅斌,尹德志,等.基于STAMP-ISM的铁路危险品运输系统风险-事故分析方法[J].中国安全生产科学技术,2020,16(9):147-153.
ZHANG Y, SHUAI B, YIN D Z, et al.Risk-accident analysis method of railway dangerous goods transportation system based on STAMP-ISM[J]. Journal of Safety Science and Technology,2020, 16(9):147-153.
[9] GUO J, LUO C, MA K J. Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment[J]. Reliability Engineering and System Safety, 2022,10:8891.
[10] 刘金芳. 铁路危险货物运输事故致因识别及安全风险机理研究[D].兰州:兰州交通大学,2022.
LIU J F. Study on cause identification and safety risk mechanism of railway dangerous goods transportation accidents[D]. Lanzhou: Lanzhou Jiaotong University,2022.
[11] REN C P, CHEN BB, XIE F J, et al. Understanding hazardous materials transportation accidents based on higher-order network theory[J]. International Journal of Environment Research and Public Health,2022, 19:13337.
[12] 任翠萍,杨明翔,张裕铭,等.快递安全事故致因网络构建及结构特性分析[J].复杂系统与复杂性科学,2023,20(2):74-80.
REN C P, YANG M X, ZHANG Y M, et al.The construction of express safety accident causation network and its structural properties[J]. Complex Systems and Complexity Science,2023,20(2):74-80.
[13] 吴昊. 重特大建筑事故动态元网络分析及脆弱性研究[D].扬州:扬州大学,2022.
WU H. Meta network analysis and vulnerability research of construction safety causation from a systematic perspective[D]. Yangzhou: Yangzhou University, 2022.
[14] 张兵,乐云,李永奎,等.工程腐败的网络结构特征与打击策略选择——基于动态元网络视角的分析[J].公共管理学报,2015,12(3):33-44,156.
ZHANG B, LE Y, LI Y K, et al. Structural characteristics and attacking strategy of construction corruption network—based on the study of dynamic network analysis[J]. Journal of Public Management, 2015,12 (3): 33-44,156.
[15] 李晶晶,丁露,李珏,等.基于动态元网络的工程职务犯罪打击策略研究[J].铁道科学与工程学报, 2021,18(6):1622-1630.
LI J J, DING L, LI J, et al. Research on the fighting strategy of engineering duty crime based on dynamic meta-network[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1622-1630.
[16] 刘潇. 国际贸易复杂动态元网络模型及应用[D].广州:华南理工大学, 2011.
LIU X. Complex dynamic meta-network model and its application in international trade[D]. Guangzhou: South China University of Technology, 2011.
[17] LIU R Q, CHEN X F. An empirical analysis of dynamic network model of international trade by using enterprise sample simulation and improved ANN algorithm[J]. Soft Computing, 2023, 27:10273-10283.
[18] 吴贤国,冯宗宝,王洪涛,等.基于动态元网络的地铁施工安全事故致因分析[J].中国安全生产科学技术, 2019,15(3):141-147.
WU X G, FENG Z B, WANG H T, et al. Analysis on causes of safety accidents in subway construction based on dynamic meta-network[J]. Journal of Safety Science and Technology, 2019, 15(3): 141-147.
[19] CARLEY K M, REMINGA J, BORGATTI S. Destabilizing dynamic networks under condition of uncertainty[C]. International Conference on Integration of Knowledge Intensive Multi-agent Systems, Cambridge, MA, USA: IEEE,2003.
[20] 杨婷,帅斌,黄文成.基于N-K模型的道路危险品运输系统耦合风险分析[J].中国安全科学学报,2019,29(9):132-137.
YANG T, SHUAI B, HUANG W C. Coupling risk analysis of road dangerous goods transportation system based on N-K model[J]. China Safety Science Journal, 2019, 29(9): 132-137.
[21] 苏磊.基于深度数据挖掘的危险品运输事故关键影响因素及致因模型研究[D].青岛:青岛科技大学,2019.
SU L. Key influences factors and cause model of dangerous goods transportation accidents analysis based on deep data mining[D]. Qingdao: Qingdao University of Science and Technology,2019.
[22] WATTS D, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J].Nature.1998,393: 440-442.
[23] 詹桢.基于多层网络的社区发现和网络节点角色划分[D]. 武汉:华中科技大学, 2021.
ZHAN Z. Community detection and role discovery based on multi-layered networks[D].Wuhan: Huazhong University of Science & Technology, 2021.
[1] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[2] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed