青海师范大学 a. 藏语智能信息处理及应用国家重点实验室;b.高原科学与可持续发展研究院,西宁 810008
A Multi-attribute Decision-making Method Based on Entropy to Identify Important Nodes in Hypernetworks
WU Yinghan, LI Mingda, HU Feng
a. The State Key Laboratory of Tibetan Intelligent Information Processing and Application; b. Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
Abstract:In order to overcome the deficiency of incomplete importance of nodes evaluated by single attribute and subjective weight selection of indicators, based on the K-shell method in hypernetwork, this paper introduces the influence of neighbor nodes on their own nodes while comprehensively considering the attributes of nodes, combined with the index of betweenness centrality, using the entropy method to determine the contribution weight of each index to node importance. A method to identify important nodes in hypernetworks is proposed from both local and global perspectives. The advantages and disadvantages of different identification methods are compared through the natural connectivity of network and the relative size of the maximum connected subgraph, and the empirical data of Xining city bus hypernetwork is used to further verify the effectiveness a feasibility of the proposed method.
吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
WU Yinghan, LI Mingda, HU Feng. A Multi-attribute Decision-making Method Based on Entropy to Identify Important Nodes in Hypernetworks. Complex Systems and Complexity Science, 2023, 20(4): 40-46.
[1] KHAREL S R, MEZEI T R, CHUNG S, et al. Degree-preserving network growth[J]. Nature Physics, 2022, 18:100-106. [2] LIU J G, REN Z M, GUO Q, et al. Node importance ranking of complex networks[J]. Acta Phys Sin,2013,62(17):178901. [3] 胡枫,赵海兴,何佳倍,等.基于超图结构的科研合作网络演化模型[J].物理学报, 2013, 62 (19): 198901. HU F, ZHAO H X, HE J B, et al. An evolving model for hypergraph-structure-based scientific collaboration networks[J]. Acta Phys Sin, 2013,62(19):198901. [4] NEUBAUER N, OBERMAYER K. Hyperincident connected components of tagging networks[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia. New York: ACM Press, 2009: 229-238. [5] ESTERAD E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A, 2006, 364: 581-594. [6] 王志平,王众托.超网络理论及其应用[M]. 北京:科学出版社,2008. [7] NEWMAN M E J. The structure and function of complex network[J]. SIAM Review,2003,45(2):167-256. [8] DOROGOVTSEV S N, Mendes J F F. Evolution of networks[J]. Advances in Physics, 2002, 51(4):1079-1187. [9] STROGATZ S H. Exploring complex networks[J]. Nature, 2001,410(6825): 268-276. [10]邓晓懿,杨阳,金淳.基于网络拓扑结构的重要节点发现算法[J].运筹与管理, 2019, 28(7): 91-99. DENG X Y, YANG Y, JIN C. Identifying influential nodes based on network topology[J]. Operations Research and Management Science, 2019,28(7):91-99. [11]KAPOOR K, SHARMA D, SRIVASTAVA J. Weighted node degree centrality for hypergraphs [C]//2013 IEEE 2nd Network Science Workshop. NY, USA: IEEE, 2013: 152-155. [12]王雨,郭进利.超网络视角下的科研合作网络节点重要性评估[J].图书馆杂志, 2018,37(10):91-102. WANG Y, GUO J L. The evaluation of node importance within the scientific collaboration network from hypernetwork perspective[J]. Library Journal, 2018,37(10):91-102. [13]SONG F, HEATH E, JEFFERSON B, et al. Hypergraph models of biological networks to identify genes critical to pathogenic viral response[J]. BMC Bioinformatics, 2021, 22(1): 287. [14]周丽娜,李发旭,巩云超,.基于K-shell的超网络关键节点识别方法[J]. 复杂系统与复杂性科学, 2021, 18(3): 15-22. ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital nodes based on k-shell in hypernetworks[J]. Complex Systems and Complexity Science,2021,18(3):15-22. [15]REN X L, LÜ L Y. Review of ranking nodes in complex networks[J]. Chinese Science Bulletin, 2014,59(13):1175-1197. [16]胡枫,刘猛,赵静,等.蛋白复合物超网络特性分析及应用[J].复杂系统与复杂性科学,2018,15(4):31-38. HU F, LIU M, ZHAO J, et al. Analysis andapplication of the topological properties of protein complex hypernetworks[J]. Complex Systems and Complexity Science, 2018,15(4):31-38. [17]BERGE C. Graphs and Hypergraphs [M]. New York: Elsevier,1973. [18]索琪,郭进利.基于超图的超网络:结构及演化机制[J]. 系统工程理论与实践, 2017, 37(3): 720-734. SUO Q, GUO J L. The structure and dynamics of hypernetworks[J]. Systems Engineering-Theory & Practice, 2017,37(3):720-734. [19]SHANNON C E, WEAVER W. The Mathematical Theory of Communication[M]. Urbana,IL:University of lllinois Press, 1949. [20]WU J, BARAHONA M, TAN Y J, et al. Spectral measure of structural robustness in complex network[J]. IEEE Transactions on Systems Man and Cybernetics Part A, 2011, 41(6): 1244-1252. [21]WU J, BARAHONA M, TAN Y J, et al. Natural connectivity of complex network[J]. Chin Phys Lett, 2010, 7(7): 078902. [22]罗海秀,赵海兴,肖玉芝,等.基于超图的公交超网络拓扑特性及鲁棒性分析[J]. 西南大学学报(自然科学版), 2021, 43(10): 181-191. LUO H X, ZHAO H X, XIAO Y Z, et al. A hypergraph-based analysis of the topology and robustness of bus hypernetworks[J]. Journal of SouthwestUniversity (Natural Science Edition), 2021,43(10):181-191.