Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (4): 47-55    DOI: 10.13306/j.1672-3813.2023.04.007
  本期目录 | 过刊浏览 | 高级检索 |
InSCC拓扑结构的能控性分析
肖朋朋1,2, 纪志坚1,2, 刘允刚3, 林崇1,2
1.青岛大学自动化学院,山东 青岛 266071;
2.山东省工业控制重点实验室,山东 青岛 266071;
3.山东大学控制科学与工程学院, 济南 250061
Controllability Analysis of InSCC Topology
XIAO Pengpeng1,2, JI Zhijian1,2, LIU Yungang3, LIN Chong1,2
1. School of Automation Qingdao University, Qingdao 266071,China;
2. Shandong Key Labratory of Industrial Control Technology, Qingdao 266071,China;
3. School of Control Science and Engineering, Shandong University, Ji′nan 250061. China
全文: PDF(1837 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究一类多智能体系统的能控性,首次提出输入强连通分量(Input strongly connected component, InSCC)的概念,利用PBH判据、图理论等知识进行分析。分析了InSCC结构的能控性,以及InSCC和路图共同组成的拓扑结构的能控性,给出了领导者的选择方法以实现系统能控;以InSCC结构为基础,研究了在不同InSCC结构之间以及路图中增加通讯边对系统能控性的影响。研究发现:对于含有InSCC,以及InSCC和路图共同组成的拓扑,按一定方式增加通讯边并不改变系统的能控性,进而提出了一类能控拓扑的构造方法,给出了含有InSCC结构的多智能体系统在切换拓扑下能控的充要条件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖朋朋
纪志坚
刘允刚
林崇
关键词 多智能体系统能控性拓扑构造InSCC    
Abstract:To study the controllability of a class of multi-agent systems, the concept of Input strongly connected component (InSCC) was first proposed, and analyzed using PBH criterion and graph theory. Firstly, the controllability of InSCC structure and the topology structure composed of InSCC and roadmap were analyzed, and a leader′s selection method was provided to achieve system controllability. Secondly, based on the InSCC structure, the influence of adding communication edges between different InSCC structures and in the road map on system controllability was studied. Research has found that for topologies containing InSCC, as well as those composed of InSCC and road maps, increasing communication edges in a certain way does not change the controllability of the system. A method for constructing controllable topologies was proposed. Finally, the necessary and sufficient conditions for the controllability of multi-agent systems containing InSCC structures under switching topology were given.
Key wordsmulti-agent system    controllability    topology construction    InSCC
收稿日期: 2022-06-06      出版日期: 2023-12-28
ZTFLH:  TP273+.5  
基金资助:国家自然科学基金(61873136,62033007);山东省泰山学者攀登计划和山东省泰山学者支持计划(ts20190930)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统,复杂网络的分析与控制等。   
作者简介: 肖朋朋(1998-),男,山东德州人,硕士研究生,主要研究方向为多智能体网络系统。
引用本文:   
肖朋朋, 纪志坚, 刘允刚, 林崇. InSCC拓扑结构的能控性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 47-55.
XIAO Pengpeng, JI Zhijian, LIU Yungang, LIN Chong. Controllability Analysis of InSCC Topology. Complex Systems and Complexity Science, 2023, 20(4): 47-55.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.04.007      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I4/47
[1] XIE G M, WANG L. Consensus control for a class of networks of dynamic agent[J]. International Journal of Robust and Nonlinear Control, 2007, 17(10/11): 941-959.
[2] XIAO F, WANG L, CHEN J, et al. Finite time formation control for multi-agent systems[J]. Automatic, 2009, 45(11):2605-2611.
[3] ZHENG Y, ZHU Y, WANG L. Consensus of heterogeneous multi-agent systems[J]. IET Control Theory and Applications, 2011, 5(16): 1881-1888.
[4] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
YAN X X, JI Z J. Game modeling analysis of multi-leaders opinion in social network[J]. Complex Systems and Complexity Science, 2022,19(1): 20-26.
[5] ADLER J L, SATAPATHY G, MANIKONDA V, et al.A-multiagent approach to cooperative traffic management and route guidance[J]. Transportation Research Part B-Methodological, 2005, 39(4): 297-318.
[6] KALMAN R E. Contributions to the theory of optimal control[J]. Boletin Sociedad Matematica Mexicana, 1960, 5(1): 102-119.
[7] KALMAN R E, HO Y C. Controllability of linear dynamical systems[J]. Contributions to Differential Equations, 1963, 1(3): 189-213.
[8] TANNER H G. On the controllability of nearest neighbor interconnections[C]. The 43rd IEEE Conference on Decision & Control.Atlantis,Paradise Island,Bahamas: 2004: 2467-2472.
[9] 王裕平. 带动态连边的多智能体系统的可控性与协同输出调节研究[D]. 浙江: 浙江大学, 2016.
WANG Y P. Resarch on the controllability and cooperative output regulation of multi-agent systems with dynamic edges [D]. Zhejiang: Zhejiang University, 2016.
[10] 陈世明, 王培, 赖强, 等. 二阶有向多智能体网络的可控包含控制[J]. 控制与决策, 2016, 31(4): 745-749.
CHEN S M, WANG P, LAI Q, et al. Controllable containment control of second order directed multi-agent networks[J]. Control and Decision, 2016, 31(4): 745-749.
[11] 钱金金. 一类多智能体系统的群可控性研究[D]. 北京: 北方工业大学, 2015.
QIAN J J. The study of a class of group controllability of multi-agent system[D]. Beijing: North China University of Techno-logy, 2015.
[12] SHE B K, MEHTA S, TON C, et al. Controllability ensured leader group selection on signed multi agent networks[J]. IEEE Transactions on Cybernetics, 2020, 50(1): 222-232.
[13] GUAN Y Q, WANG L. Controllability of multi-agent systems with directed and weighted signed networks[J]. Systems & Control Letters, 2018, 116: 47-55.
[14] SUN C, Hu G Q, XIE L H. Controllability of multiagent networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2017, 62(10): 5457-5462.
[15] TIAN L L, GUAN Y Q, WANG L. Controllability and observability of multi-agent systems with general linear dynamics under switching topologies[J]. International Journal of Control, 2019, 94(5): 1355-1367.
[16] ZHAO B, CHEN MZQ, GUAN Y Q, et al. Controllability of heterogeneous multiagent systems[J]. International Journal of Robust and Nonlinear Control, 2020, 30(2): 512-525.
[17] LIU B, SU H S, Wu L C, et al. Observability of leader-based discrete-time multi-agent systems over signed networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(1): 25-39.
[18] RAHMANI A, JI M, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM Journal on Control and Optimization, 2009, 48(1): 162-186.
[19] XIANG L Y, CHEN F, REN W et al. Advances in network controllability[J]. IEEE Circuits & Systems Magazine, 2019, 19(2):8-32.
[20] 赵兰浩, 纪志坚. 符号网络条件下扩散耦合多智能体系统的可控性分析[J]. 系统科学与数学, 2021, 41(6): 1455-1466.
ZHAO L H, JI Z J. Controllability analysis of diffusion coupled multi-agent system under signed networks[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(6): 1455-1466.
[21] XIE G M, WANG L. Controllability and stabilizability of switched linear-systems[J]. Systems & Control Letters, 2003, 48(2): 135-155.
[1] 张虎林, 李成铁, 王立夫. 边转换与增加对有向网络能控性的影响[J]. 复杂系统与复杂性科学, 2023, 20(3): 11-19.
[2] 杜向阳, 李伟勋, 陈增强, 张利民. 非线性耦合多智能体系统组编队跟踪控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 72-79.
[3] 冯万典, 彭世国, 曾梓贤. 脉冲控制下半马尔可夫随机MAS的均方一致性[J]. 复杂系统与复杂性科学, 2022, 19(3): 81-87.
[4] 张志伟, 纪志坚. 有向路径下的一类多智能体系统的能控性分析[J]. 复杂系统与复杂性科学, 2022, 19(2): 63-70.
[5] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
[6] 王潇, 纪志坚. 基于MAS的合作—竞争编队研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 8-14.
[7] 李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
[8] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[9] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed