Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 11-18    DOI: 10.13306/j.1672-3813.2017.02.002
  本期目录 | 过刊浏览 | 高级检索 |
三部图网络上的媒介传染病动力学
王玲娜1, 王领弟2, 傅新楚1
1.上海大学理学院, 上海 200444;
2.河北省肃宁县疾病控制中心, 河北 肃宁 062350
Epidemic Dynamics of Vector-Borne Diseases on Tripartite Networks
WANG Lingna1, WANG Lingdi2, FU Xinchu1
1. College of Sciences, Shanghai University, Shanghai 200444, China;
2. Disease Control Center of Suning County, Hebei Province, Suning 062350, China
全文: PDF(1031 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 很多媒介传染病在人类、媒介和动物3个种群中传播, 针对这类传染病提出三部图网络。 通过数学分析,发现三部图网络上模型的基本再生数不仅与二阶矩和平均度的比值有关还与平均度有关, 这与二部图网络上的结论有本质区别。 通过数值模拟,还发现:三部图网络比二部图网络更有利于疾病的传播; 在同样的接触模式下, 4个交叉传染率对基本再生数有同样的影响; 传染病在三个子网络上同时存在或同时消亡。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王玲娜
王领弟
傅新楚
关键词 三部图网络媒介传染病基本再生数    
Abstract:In this paper, we study the epidemic dynamics on tripartite networks. Many vector-borne diseases spread among three populations (human beings, vectors and animals).In response to such diseases, we propose tripartite networks. Through theoretical analysis, we find the basic reproduction number of tripartite networks is not only relevant to the ratio between the second moment and the average degree, but also to the average degree, which is different with the result on bipartite networks in essence. Through numerical analysis, we also find that the diseases on the tripartite networks are easier to propagate than that on the bipartite networks; under the same contact patterns, four infection rates have the same effect on the basic reproduction number; the diseases exist or disappear on three subnetworks at the same time.
Key wordstripartite network    vector-borne disease    basic reproduction number
收稿日期: 2016-04-22      出版日期: 2025-02-25
ZTFLH:  O29  
  N94  
基金资助:国家自然科学基金(11331009, 11572181)
作者简介: 王玲娜(1978-),女,河北沧州人,博士研究生,主要研究方向为复杂网络上的传播动力学。
引用本文:   
王玲娜, 王领弟, 傅新楚. 三部图网络上的媒介传染病动力学[J]. 复杂系统与复杂性科学, 2017, 14(2): 11-18.
WANG Lingna, WANG Lingdi, FU Xinchu. Epidemic Dynamics of Vector-Borne Diseases on Tripartite Networks[J]. Complex Systems and Complexity Science, 2017, 14(2): 11-18.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.002      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/11
[1] Cooke K L. Stability analysis for a vector disease model[J].Rocky Mountain Journal of Mathematics, 1979, 9: 31-42.
[2] Bacaër N. Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population[J].Bull Math Biol, 2007, 69: 1067-1091.
[3] Hosack G R, Rossignol P A, Van dD P. The control of vector-borne disease epidemics[J].J Theor Biol, 2008, 255: 16-25.
[4] Ruan S, Xiao D, Beier J. On the delayed Ross-Macdonald model for malaria transmission[J].Bull Math Biol, 2008, 70: 1098-1114.
[5] Smith D L, Dushoff J, McKenzie F E. The risk of a mosquito-borne infection in a heterogeneous environment[J].PLoS Biol, 2004, 2: 1957-1964.
[6] Marcati P, Pozio A M. Global asymptotic stability for a vector disease model with spatial spread[J].J Math Biol, 1980, 9: 179-187.
[7] Liddo A D. A S-I-R vector disease model with delay[J].Mathematical Modelling, 1986, 7:793-802.
[8] Shi H, Duan Z, Chen G. An SIS model with infective medium on complex networks[J].Physica A Statistical Mechanics & Its Applications, 2008, 387(8/9): 2133-2144.
[9] Zhu G, Chen G, Zhang H, et al. Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations[J].Communications in Nonlinear Science & Numerical Simulation, 2015, 20(1): 240-249.
[10] Zhang R, Li D, Jin Z. Dynamic analysis of a delayed model for vector-borne diseases on bipartite networks[J].Applied Mathematics & Computation, 2015, 263(C): 342-352.
[11] Gomez-Gardenes J, Latora V, Moreno Y, et al. Spreading of sexually transmitted diseases in heterosexual populations[J].Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1399-1404.
[12] Van dD P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Math Biosci, 2002, 180: 29-48.
[13] Zhao X Q, Jing Z J. Global asymptotic behavior in some cooperative systems of functional differential equations[J].Canadian Appl Math Quarterly, 1996, 4: 421-444.
[14] Newman M E J. The structure and function of complex networks[J].SIAM Review, 2003, 45: 167-256.
[1] 徐云程, 胡华, 孙小军. 三层无标度关联网络协同传播模型阈值研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 1-8.
[2] 周武略, 白迪, 赵继军. 武汉市发生的新冠病毒肺炎建模研究分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 58-65.
[3] 瞿倩倩, 韩华, 吕亚楠, 贾承丰, 马媛媛. 基于社交网络结构特征的S2IR谣言传播模型[J]. 复杂系统与复杂性科学, 2019, 16(3): 48-59.
[4] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed