Abstract:Trapping process constituted a primary problem of random walks. Based on the field survey data and the theory of complex network, four types of nodes and four types of edges were defined, and then the multiple relationship networks of Spartina alterniflora genets were constructed, which showed disassortativity. In order to explore the topological and dynamic characteristics of the multiple relationship networks of S. alterniflora genets, the random walk models with multiple traps were established. The simulation result showed that the bunches and the ramets without spikes were the major regulatory nodes of ATT in the random walks. We concluded that the horizontal spatial diffusion network patterns of S. alterniflora genets revealed by the models reflected their habitat heterogeneity patterns. Furthermore, this type of models might generally provide a reference for the analysis on the heterogeneity patterns of the habitats of other clonal plants.
余艳泽, 陈希, 李德志, 韩定定. 互花米草克隆基株网络的随机游走特征[J]. 复杂系统与复杂性科学, 2017, 14(2): 82-88.
YU Yanze, CHEN Xi, LI Dezhi, HAN Dingding. Random Walk on the Clonal Network of Spartina Alterniflora[J]. Complex Systems and Complexity Science, 2017, 14(2): 82-88.
[1] Metcalfe W S, Ellison A M, Bertness M D. Survivorship and spatial development of Spartina alterniflora Loisel. (Gramineae) seedlings in a new England salt marsh[J].Annals of Botany, 1986, 58(2): 249-258. [2] Simenstad C A, Thom R M. Spartina alterniflora (smooth cordgrass) as an invasive halophyte in pacific northwest estuaries[J].Hortus Northwest, 1995, 6(1): 9-12, 38-40. [3] Daehler C C, Strong D R. Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: the influence of herbivory, pollination, and establishment site[J].American Journal of Botany, 1994, 81(3): 307-313. [4] Daehler C C, Strong D R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA[J].Biological Conservation, 1996, 78(1/2): 51-58. [5] Burger J. Nesting behavior of Herring Gulls: invasion into Spartina salt marsh areas of New Jersey[J].Condor, 1977, (2): 162-169. [6] Craft C, Reader J, Sacco J N, et al. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes[J].Ecological Applications, 1999, 9(4): 1405-1419. [7] Ranwell D S. Spartina salt marshes in southern England. II. Rate and seasonal pattern of sediment accretion. III. Rates of establishment, succession and nutrient supply at bridgwater bay, somerset[J].Journal of Ecology, 1964, 52(1): 79-94. [8] Mendelssohn I A, McKee K L, Patrick W H. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia[J].Science, 1981, 214(4519): 439-41. [9] Teal J M, Kanwisher J W. Gas transport in the marsh grass, Spartina alterniflora[J].Journal of Experimental Botany, 1966, 17(2): 355-361. [10] Bradley P M, Morris J T. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora[J].Ecology, 1990, 71(1): 282-287. [11] Hedge P, Kriwoken L K. Evidence for effects of Spartina anglica invasion on benthic macrofauna in little swanport estuary, Tasmania[J].Austral Ecology, 2000, 25(2): 150-159. [12] Wang Q, An S, Ma Z, et al. Invasive Spartina alterniflora: biology, ecology and management[J].Acta Phytotaxonomica Sinica, 2005, 44(5): 559-588. [13] Nehring S, Hesse K J. Invasive alien plants in marine protected areas: the Spartina anglica affair in the European Wadden Sea[J].Biological Invasions, 2008, 10(6): 937-950. [14] Dennis B, Civille J C, Strong D R. Lateral spread of invasive Spartina alterniflora in uncrowded environments[J].Biological invasions, 2011, 13(2): 401-411. [15] Querné J, Ragueneau O, Poupart N. In situ biogenic silica variations in the invasive salt marsh plant, Spartina alterniflora: a possible link with environmental stress[J].Plant and Soil, 2012, 352(1/2): 157-171. [16] Tobias V D, Williamson M F, Nyman J A. A comparison of the elemental composition of leaf tissue of Spartina patens and Spartina alternifora in Louisiana's coastal marshes[J].Journal of Plant Nutrition, 2014, 37(8):1327-1344. [17] Arthur M L. A competitive interaction and dominance experiment between the vegetative marsh species phragmites australis and Spartina cynosuroides under elevated nitrogen and salinity levels[D].Maryland:University of Maryland, 2013. [18] Ainouche M, Chelaifa H, Ferreira J, et al. Erratum From—Polyploid Evolution in Spartina: Dealing with Highly Redundant Hybrid Genomes[M].Polyploidy and Genome Evolution. Springer Berlin Heidelberg, 2012: 225-243. [19] Salmon A, Ainouche M L, Wendel J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina[J].Molecular Ecology, 2005, 14(4): 1163-1175. [20] Strong D R, Ayres D R. Ecological and evolutionary misadventures of Spartina[J].Annual Review of Ecology, Evolution, and Systematics, 2012, 44(1): 389-410. [21] Zhang Z Z, Lin Y, Ma Y J. Effect of trap position on the efficiency of trapping in treelike scale-free networks[J].Phys. A: Math. Theor. 2011,44(7): 075102. [22] Redner S. A guide to first-passage processes[J].American Journal of Physics, 2001, 70(11): 49-70. [23] Noh J D, Rieger H. Random walks on complex networks[J].Phys Rev Lett, 2004, 92(11): 118701. [24] Condamin S, Benichou O, Moreau M. First-passage times for random walks in bounded domains[J].Phys Rev Lett, 2015, 95(26): 260601. [25] Lin Y, Julaiti A, Zhang Z Z. Mean first-passage time for random walks in general graphs with a deep trap[J].J Chem Phys, 2012, 137(12): 124104. [26] Wu B, Lin Y, Zhang Z Z, et al. Trapping in dendrimers and regular hyperbranched polymers[J].J Chem Phys, 2012, 137(4): 044903. [27] Zhang Z Z, Yang Y H, Lin Y. Random walks in modular scale-free networks with multiple traps[J].Phys Rev E, 2012, 85(1): 011106. [28] Roy S, Singh J S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropical forest[J].Journal of Ecology, 1994, 82(3): 503-509. [29] Bagrow J P.Communities and bottlenecks: trees and treelike networks have high modularity[J].Physical Review E, 2012, 85(6): 066118. [30] Benton T G, Vickery J A, Wilson J D. Farmland biodiversity: is habitat heterogeneity the key?[J].Trends in Ecology & Evolution, 2003, 18(4): 182-188. [31] Cheng X, Luo Y, Chen J, et al. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island[J].Soil Biology & Biochemistry, 2006, 38(12): 3380-3386. [32] Xiao D. Study on spreading patterns and mechanism of an invasive Spartina alterniflora on the saltmarshes in the Yangze Estuary[D].Shanghai: East China Normal University 2010. [33] Warren R S, Fell P E, Grimsby J, et al. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower connecticut river[J].Estuaries, 2001, 24(1): 90-107. [34] Wang Q, Wang C, Zhao B, et al. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats[J].Biological Invasions, 2006,8(7): 1547-1560. [35] 杜莎, 韩定定, 李德志. 克隆植物的演化博弈研究[J].复杂系统与复杂性科学, 2016,13(1): 95-101. Du Sha, Han Dingding, Li Dezhi. The evolutionary game study on a clonal plant spartina alterniflora loisel[J].Complex Systems and Complexity Science, 2016, 13(1): 95-101. [36] Qian J H, Yang C H, Han D D, et al. Multi-scaling mix and non-universality between population and facility density[J].Physica A: Statistical Mechanics and Its Applications, 2012, 391(21): 5146-5152. [37] Han D D, Qian J H, Ma Y G. Emergence of double scaling law in complex systems[J].Europhysics Letters, 2011, 94(2): 28006.