Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 89-96    DOI: 10.13306/j.1672-3813.2017.02.013
  本期目录 | 过刊浏览 | 高级检索 |
基于Memetic算法和关联学习的社会网络聚类分析
孙奕菲1a, 姚若侠1b, 焦李成2
1.陕西师范大学a.物理学与信息技术学院,b.计算机科学学院,西安 710119;
2.西安电子科技大学智能感知与图像理解教育部重点实验室,西安 710071
A Social Network Clustering Analysis Algorithm Based on Memetic Algorithm and Relationship Learning
SUN Yifei1a, YAO Ruoxia1b, JIAO Licheng2
1. a.School of Physics and Information Technology, b.School of Computer Science, Shaanxi Normal University, Xi’an 710119;      
2. Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education,Xidian University, Xi’an 710071
全文: PDF(1365 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对社会网络系统中的社会属性知识没有被充分挖掘,网络结构优化算法学习能力弱的问题,提出了一种Memetic关联学习算法(MRLA)。研究了新算法的基本原理和各个算子,实现了社会属性信息的有效利用。新算法充分结合基于Memetic计算的准确性和基于社会关联学习的快速性,以3个真实社会网络数据集作为测试集,实验结果表明MRLA算法能够有效实现社会网络的聚类分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙奕菲
姚若侠
焦李成
关键词 社会网络聚类Memetic算法强弱关联学习    
Abstract:In social networks, the property of society has not been fully exploited. Meanwhile, learning ability for network structure optimization is weak. So a new Memetic Relationship Learning Algorithm (MRLA) has been proposed. This paper studied the fundamentals and basic procedure of MRLA, and effectively utilized the social attribute information. The new algorithm integrated the accuracy of Memetic computation and the quickness of social relational learning. The experimental results of three real-world web data sets show the validity and feasibility of the proposed algorithms.
Key wordssocial network    cluster    memetic algorithm    relationship learning
收稿日期: 2016-11-01      出版日期: 2025-02-25
ZTFLH:  TP18  
基金资助:国家重点基础研究发展计划(2013CB329402);国家自然科学基金(11471004);中央高校基本科研业务费(GK201603014);陕西师范大学教学模式创新与实践专项基金(JSJX2016Q014)
作者简介: 孙奕菲(1983-),女,河北唐山人,博士,讲师,主要研究方向为计算智能,复杂网络数据挖掘及智能信息处理。
引用本文:   
孙奕菲, 姚若侠, 焦李成. 基于Memetic算法和关联学习的社会网络聚类分析[J]. 复杂系统与复杂性科学, 2017, 14(2): 89-96.
SUN Yifei, YAO Ruoxia, JIAO Licheng. A Social Network Clustering Analysis Algorithm Based on Memetic Algorithm and Relationship Learning[J]. Complex Systems and Complexity Science, 2017, 14(2): 89-96.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.013      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/89
[1] Newman M E J. Detecting community structure in networks[J].The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 38(2): 321-330.
[2] Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis[J].Physical review E, 2009, 80(5): 056117.
[3] Fortunato S. Community detection in graphs[J].Physics Reports, 2010, 486(3): 75-174.
[4] 解, 汪小帆. 复杂网络中的社区结构分析算法研究综述[J].复杂系统与复杂性科学. 2005, 2(3): 1-12.
Xie Zhou, Wang Xiaofan. An overview of algorithms for analyzing community structure in complex networks[J].Complex systems and complexity science, 2005, 2(3): 1-12.
[5] 李晓佳, 张鹏, 狄增如,等.复杂网络中的社区结构. 复杂系统与复杂性科学. 2008, 5(3): 19-42.
Li Xiaojia, Zhang Peng, Di Zengru, et al. Community structure in complex networks[J].Complex systems and complexity science, 2008, 5(3): 19-42.
[6] Li D Y, Xiao L, Han Y, et al. Network thinking and network intelligence[J].Web Intelligence Meets Brain Informatics. Springer, 2007, 36-58.
[7] Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: towards memeticalgorithms[J].Caltech concurrent computation program, C3P Report, 1989, 826: 1989.
[8] Wang S, Wang L. An estimation of distribution algorithm-based memeticalgorithm for the distributed assembly permutation flow-shop scheduling problem[J].IEEE Transactions on System, Man, Cybernetics, 2016, 46(1):139-149.
[9] Lazer D, Pentland A, Adamic L, et al. Computational social science[J].Science,2009, 323(1):721-723.
[10] Giles J. Computational social science: making the links[J].Nature, 2012,488(7412):448-450.
[11] Ong Y S, Lim M H, Chen X. Research frontier-memetic computation—past, present & future[J].IEEE Computational Intelligence Magazine, 2010, 5(2): 24.
[12] Cai Q, Ma L, Gong M, et al. A survey on network community detection based on evolutionary computation[J].International Journal of Bio-Inspired Computation, 2016, 8(2): 84-98.
[13] Granovetter M S. The strength of weak ties[J].American Journal of Sociology, 1973: 1360-1380.
[14] Friedmann J. The world city hypothesis[J].Development and Change, 1986, 17(1): 69-83.
[15] Guest L. Review of the people′s choice: how the voter makes up his mind in a presidential campaign.[J].American Journal of Sociology, 1946, 77(51):177-186.
[16] Lusseau D, Schneider K, Boisseau O J, et al. The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations[J].Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405.
[17] Zachary W W. An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research, 1977: 452-473.
[18] Girvan M, Newman M E J. Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences, 2002, 99(12): 7821-7826.
[1] 吴聪玲, 吴召艳. 带耦合时滞的分数阶社团网络的聚类滞后同步[J]. 复杂系统与复杂性科学, 2024, 21(4): 1-5.
[2] 邓中乙. 面向磨煤机组故障诊断的聚类粗化图模型[J]. 复杂系统与复杂性科学, 2024, 21(1): 152-158.
[3] 刘浩敏, 曲大义, 宋慧, 孟奕名. 快速路交通流状态突变边界提取及其演化规律[J]. 复杂系统与复杂性科学, 2023, 20(3): 74-81.
[4] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[5] 李培哲, 菅利荣. 网络结构、知识基础与企业创新绩效[J]. 复杂系统与复杂性科学, 2022, 19(2): 31-38.
[6] 邓云生, 张纪会. 基于分组选择的可调聚类网络中个体的合作行为研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 39-44.
[7] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[8] 王娜, 胡超芳. 基于客观聚类的手写数字识别方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 77-84.
[9] 唐四慧, 庄东, 刘潇. 基于Hausdorff距离的关系层次聚类算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 60-68.
[10] 李小珂, 赵紫娟, 郭强, 刘建国, 李仁德. 基于文本挖掘的网络科学会议主题研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 27-38.
[11] 苗萍, 杨洪勇. 一种高聚类幂律可调网络异质配置模式下的公共品博弈研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 52-58.
[12] 范如国, 崔迎迎, 张应青. 多元偏好、社团结构与网络合作涌现仿真研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 26-34.
[13] 肖宇, 韩景倜. 异质阈值决策规则下的复杂网络扩散[J]. 复杂系统与复杂性科学, 2016, 13(3): 47-57.
[14] 周静, 袁瑛, 涂平. 中国电影圈主要导演和演员合作网络的结构特征分析[J]. 复杂系统与复杂性科学, 2016, 13(3): 69-75.
[15] 朱张祥, 刘咏梅. 在线社交网络谣言传播的仿真研究——基于聚类系数可变的无标度网络环境[J]. 复杂系统与复杂性科学, 2016, 13(2): 74-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed