Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 97-102    DOI: 10.13306/j.1672-3813.2017.02.014
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的城市轨道交通网络中心性研究
陈培文, 陈峰, 胡映月, 李小红, 王子甲
1.北京交通大学土木建筑工程学院,北京 100044;
2.城市轨道交通研究中心,北京 100044
On Urban Rail Transit Network Centrality Using Complex Network Theory
CHEN Peiwen, CHEN Feng, HU Yingyue, LI Xiaohong, WANG Zijia
1. School of Civil Engineering, Beijing Jiaotong University, Beijing, China, 100044;      
2. Urban Rail Research Center, Beijing, China, 100044
全文: PDF(1033 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 城市轨道交通车站在网络中承担着乘客集散和连通区间的重要作用,如何有效评估其在客流网络中的影响力是研究网络结构优化和降低运营风险的重点。基于复杂网络理论,以车站为研究对象,通过建立网络客流分配模型,结合轨道交通智能卡数据提出城市轨道交通网络车站客流的集聚程度指标和3个客流中心性指标。将研究方法应用于北京市地铁网络,识别出了北京地铁的重点车站并且系统性分析了北京地铁早高峰客流现状,为地铁网络运营提出意见。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈培文
陈峰
胡映月
李小红
王子甲
关键词 城市轨道交通网络中心性客流集聚复杂网络AFC数据    
Abstract:The urban rail transit station is an important place where the passengers gather and distribute. It plays an essential role in connecting sections in a subway network. How to effectively evaluate the influence of the stations on the network is a key point to study the network structure optimization and the operation risk reduction. Based on complex network theory, this paper established a passenger flow assignment model for the urban rail transit network. Utilizing the passenger flow data from smart cards, a concentration index of passenger flow in station and three centrality indexes of network were proposed to identify the critical stations in the network. Finally, by applying this method to the Beijing subway network, we verified its validity and it can recognize the key stations successfully. Further, we systematically analyzed the current situation of the passenger flow during rush hours of Beijing subway, and put forward some suggestions for the subway network operation.
Key wordsurban rail transit    network centrality    concentration of passenger flow    complex network theory    AFC data
收稿日期: 2016-11-01      出版日期: 2025-02-25
ZTFLH:  U231  
基金资助:国家自然科学基金青年科学基金(51408029)
作者简介: 陈培文(1992-),男,河南周口人,硕士,主要研究方向为城市轨道交通。
引用本文:   
陈培文, 陈峰, 胡映月, 李小红, 王子甲. 基于复杂网络的城市轨道交通网络中心性研究[J]. 复杂系统与复杂性科学, 2017, 14(2): 97-102.
CHEN Peiwen, CHEN Feng, HU Yingyue, LI Xiaohong, WANG Zijia. On Urban Rail Transit Network Centrality Using Complex Network Theory[J]. Complex Systems and Complexity Science, 2017, 14(2): 97-102.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.014      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/97
[1] Traversi D, Alessandria L, Schilirò T, et al. Scaling in transportation networks[J].Plos One, 2014, 9(7):e102007.
[2] 肖雪梅. 城市轨道交通网络化运营风险与安全评估[D].北京:北京交通大学, 2014.
Xiao Xuemei. Risk and safety assessment of urban rail transit networks operation[D].Beijing: Beijing JiaotongUniversity, 2014.
[3] 吴德馨. 基于复杂网络理论的铁路运营网络中心性分析[D].北京:北京交通大学, 2015.
Wu Dexin. Train operational network centrality analysis based complex network theory[D].Beijing: Beijing JiaotongUniversity, 2015.
[4] Freeman L C. Centrality in social networks conceptual clarification[J].Social Networks, 2012, 1(3):215-239.
[5] 常树春, 张启义, 王文涛. 交通网络的中心性分析[J].军事交通学院学报, 2011, 13(1):4-7.
Chang Shuchun, Zhang Qiyi, Wang Wentao. Analysis of centralities of traffic networks[J].Journalof Academy of Military Transportation, 2011, 13(1):4-7.
[6] Derrible S. Network centrality of metro systems[J].Plos One, 2012, 7(7):1705-1712.
[7] 吴俊, 谭跃进, 邓宏钟,等. 考虑级联失效的复杂负载网络节点重要度评估[J].小型微型计算机系统, 2007, 28(4):627-630.
Wu Jun, Tan Yuejin, Deng Hongzhong,et al. Evaluating node importance considering cascading failure in complex load-networks[J].Journal of Chinese Computer Systems, 2007, 28(4):627-630.
[8] 陈峰, 胡映月, 李小红,等. 城市轨道交通有权网络相继故障可靠性研究[J].交通运输系统工程与信息, 2016, 16(2):139-145.
ChenFeng, Hu Yingyue, Li Xiaohong, et al.Cascading failures in weighted network of urban rail transit[J].Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 139-145.
[9] Cheng Y Y, Lee K W, Lim E P, et al. Measuring centralities for transportationnetworks beyond structures[C]//Kazienko P, ChawlaN.Applications of Social Media and Social Network Analysis. Switzerland: Springer International Publishing, 2015:23-39.
[10] Seaton K A, Hackett L M. Stations, trains and small-world networks[J].Physica A Statistical Mechanics & Its Applications, 2004, 339(3/4):635-644.
[11] 汪玲. 基于边权的交通网络异质性及拥塞分析[D].武汉:华中科技大学,2013.
Wang Ling. Heterogeneity and congestion analysis of traffic networks based on link weight[D].Wuhan:Huazhong University of Science and Technology, 2013.
[12] Wang J, Wang L. Congestion analysis of traffic networks with direction-dependantheterogeneity[J].Physica A Statistical Mechanics & Its Applications, 2013, 392(2):392-399.
[13] Defond M L, Park C W. The effect of competition on CEO turnover 1[J].Journal of Accounting & Economics, 1999, 27(1):35-56.
[14] 张芳. 中国商业银行市场赫芬达尔指数研究[J].产业与科技论坛, 2011, 10(3):127-128.
Zhang Fang. Research on herfindalindex of Chinese commercial bank market[J].Estate and Science Tribune, 2011, 10(3):127-128.
[15] Friedkin N E. Theoretical foundations for centrality measures[J].American Journal of Sociology, 1991, 96(6):1478-1504.
[16] 赖树坤. 城市轨道交通票务清分方法研究[D].北京:北京交通大学, 2008.
Lai Shukun. Research on income distribution model of urban rail transit[D].Beijing: Beijing JiaotongUniversity, 2008.
[17] 贾楠. 城市轨道交通票务清分问题研究[D].北京交通大学,2008.
Jia Nan.Research on urban rail traffic ticket income distribution problem[D].Beijing: Beijing JiaotongUniversity, 2008.
[18] 刘剑锋, 孙福亮, 柏赟, 等. 城市轨道交通乘客路径选择模型及算法[J].交通运输系统工程与信息,2009, 9(2):81-86.
LiuJianfeng, Sun Fuliang,Bai Yun, et al. Passenger flow route assignment model and algorithm for urban rail transit network[J].Journal of Transportation Systems Engineering and Information Technology, 2009, 9(2): 81-86.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[14] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed