Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 81-85    DOI: 10.13306/j.1672-3813.2016.03.011
  本期目录 | 过刊浏览 | 高级检索 |
某酸浸冶炼生产物理信息系统的复杂网络特征
卢绍文, 张超
东北大学流程工业综合自动化国家重点实验室, 沈阳 110819
Complex Topology Features of the Cyber Physical System of an Acid Leaching Industrial Process
LU Shaowen, ZHANG Chao
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
全文: PDF(1120 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以一个实际镍钴酸浸冶炼工业过程为对象,将工艺装置、阀门、检测仪表、执行机构、控制系统抽象成网络的节点,将物流管道、通信线路抽象成网络的边,进而形成复杂信息物理系统网络。通过统计分析,首次发现该生产系统网络的拓扑结构具备复杂网络的典型特征,即无标度特性和小世界特性,同时具有分层结构。最后,通过分析推测其它复杂流程生产信息物理系统所形成的网络也具备类似特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢绍文
张超
关键词 无标度网络小世界网络复杂网络流程工业生产过程信息物理系统    
Abstract:This paper first reports that the network topology of the cyber physical system of the nickel–cobalt acid leaching process is a scale-free, hierarchical, small-world network. The network topology is formed by mapping the processing units, valves, meters, actuators, and controllers as nodes and the communication cables and material stream pipes as edges. We speculate that this result may be valid for other complex processing system.
Key wordsscale-free network    small world network    complex network    process industrial processes    cyber physical system
收稿日期: 2014-06-19      出版日期: 2025-02-25
ZTFLH:  TP27  
基金资助:国家自然科学基金(61240012); 中央高校基本科研业务费专项资金(N120408003); 国家科技支撑计划课题(2012BAF19G01); 流程工业综合自动化国家重点实验室开放课题(PAL-N201304)
作者简介: 卢绍文(1977-), 男,河北保定人,博士,教授, 主要研究方向为复杂工业过程建模与仿真。
引用本文:   
卢绍文, 张超. 某酸浸冶炼生产物理信息系统的复杂网络特征[J]. 复杂系统与复杂性科学, 2016, 13(3): 81-85.
LU Shaowen, ZHANG Chao. Complex Topology Features of the Cyber Physical System of an Acid Leaching Industrial Process[J]. Complex Systems and Complexity Science, 2016, 13(3): 81-85.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.011      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/81
[1] R Baheti, Gill H, Cyber-physical systems, The Impact of Control Technology [M].New York: IEEE, 2011: 161-166.
[2] Jiang H, Gao J, Gao Z, et al, Safety analysis of process industry system based on complex networks theory [C].International Conference on Mechatronics and Automation. IEEE, 2007: 480-484.
[3] Wall K, Complexity of chemical products, plants, processes and control systems [J].Chemical Engineering Research and Design, 2009, 87(10): 1430-1437.
[4] Costa L D F, Oliveira O N, Travieso G, et al. Analyzing and modeling real-world phenomena with complex networks: a survey of applications [J].Advances in Physics, 2011, 60(3): 329-412.
[5] Sporns O, The human connectome: a complex network [J].Annals of the New York Academy of Sciences, 2011, 1224(1): 109-125.
[6] Kaluza P, K?lzsch A, Gastner MT, et al. The complex network of global cargo ship movements [J].Journal of the Royal Society Interface, 2010, 7(48): 1093-1103.
[7] Wang J, Mo H, Wang F, et al. Exploring the network structure and nodal centrality of china’s air transport network: A complex network approach [J].Journal of Transport Geography,2011, 19(4): 712-721.
[8] Cancho R F I, Janssen C, Solé RV. Topology of technology graphs: Small world patterns in electronic circuits [J] , Phys Rev E,2001, 64(9): 046119-1-5.
[9] Wen L, Dromey R, Kirk D. Software engineering and scale-free networks [J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2009, 39(4): 845-854.
[10] Wang X F, Chen G, Complex networks: small-world, scale-free and beyond [J].Circuits and Systems Magazine,2003, 3(1): 6-20.
[11] Liu Y Y, Slotine J J, Barabasi A L, Controllability of complex networks [J].Nature, 2011, 473(7346): 167-173.
[12] Charpentier J, McKenna T. Managing complex systems: some trends for the future of chemical and process engineering [J].Chemical Engineering Science, 2004, 59(8): 1617-1640.
[13] Andrade Jr J, Bezerra D, Ribeiro Filho J, et al. The complex topology of chemical plants [J].Physica A: Statistical Mechanics and its Applications,2006, 360(2): 637-643.
[14] Liu S, Liao Z, Feng Y, et al. Topological properties of refinery system: A complex network approach [C].8th IEEE International Conference on Control and Automation. IEEE, 2010: 345-349.
[15] Liu S, Rong G. Analysis on refinery system as a complex task-resource network [J].Chinese Journal of Chemical Engineering, 2013, 21(3): 253-262.
[16] Kaya S, Topkaya Y. High pressure acid leaching of a refractory lateritic nickel ore [J].Minerals Engineering, 2011, 24(11): 1188-1197.
[17] Cohen R, Havlin S. Complex networks: structure, robustness and function [M].Cambridge: Cambridge University Press, 2010.
[18] Samad T, McLaughlin P, Lu J. System architecture for process automation: Review and trends [J].Journal of Process Control, 2007, 17(3): 191-201.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[5] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 谢逢洁, 姚欣, 王思一. 高阶结构对无标度网络上合作行为演化的影响[J]. 复杂系统与复杂性科学, 2024, 21(1): 12-19.
[10] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[13] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[14] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[15] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed