Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 51-55    DOI: 10.13306/j.1672-3813.2016.04.007
  本期目录 | 过刊浏览 | 高级检索 |
“随机”与“择优”——超网络演化的内在驱动力
索琪1,2, 郭进利1
1.上海理工大学管理学院,上海 200093;
2.青岛科技大学经济与管理学院,山东 青岛 266061
Both Random and Preferential Attachment —the Inner Motivation in the Evolution of Hypernetworks
SUO Qi1,2 , GUO Jinli1
1. Business School, University of Shanghai for Science and Technology, Shanghai 200093,China;
2. School of Economics and Management, Qingdao University of Science and Technology, Qingdao 266061,China
全文: PDF(696 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于“随机连接”和“择优选择”的演化机制,构建了一个随机-择优混合超网络演化模型。使用Poisson 过程理论和连续化方法对模型进行分析,获得超度分布的解析表达式,分析表明网络的稳态平均超度分布服从漂移的幂律分布。该模型可以退化到复杂网络和超网络中的标准模型,具有一定的普适性。通过调节机制系数,模型可以体现混合连接机制。并对3个实证数据进行了分析,该模型能有效刻画不同数据的演化机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
索琪
郭进利
关键词 复杂网络超图超网络    
Abstract:An evolving hypernetwork model is constructed with both preferential and random attachment. We analyze the model by using Poisson process theory and a continuous technique, and obtain the stationary average hyperdegree distribution of the hypernetwork. The analytical result shows that the stationary average hyperdegree distribution can be described with “shifted power law” (SPL) function form. Our model is also universal, in that the standard model in complex networks and scale-free model in hypernetworks can all be seen as degenerate cases of the model. By adjusting the parameter, the model can reflect the mixed-connection mechanism. In addition, three empirical data are analyzed, and can be effectively described by the model.
Key wordscomplex network    hypergraph    hypernetwork
收稿日期: 2014-12-17      出版日期: 2025-02-25
ZTFLH:  T94  
基金资助:国家自然科学基金(71571119);教育部人文社会科学研究项目(16YJC870012);国家统计科学研究项目(2015LZ49);青岛市社会科学规划研究项目(QDSKL150462)
通讯作者: 郭进利(1960-),男,陕西西安人,博士,教授,主要研究方向为复杂网络、人类行为动力学。   
作者简介: 索琪(1980-),女,黑龙江哈尔滨人,博士研究生,讲师,主要研究方向为复杂网络、超网络。
引用本文:   
索琪, 郭进利,. “随机”与“择优”——超网络演化的内在驱动力[J]. 复杂系统与复杂性科学, 2016, 13(4): 51-55.
SUO Qi , GUO Jinli. Both Random and Preferential Attachment —the Inner Motivation in the Evolution of Hypernetworks[J]. Complex Systems and Complexity Science, 2016, 13(4): 51-55.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.007      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/51
[1] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286 (5439): 509-512.
[2] 王众托. 关于超网络的一点思考[J].上海理工大学学报, 2011, 33(3): 229-237.
Wang Zhongtuo. Reflection on supernetwork[J].University of Shanghai for Science and Technology, 2011, 33(3):229-237.
[3] Lü L, Medo M, Yeung C H, et al. Recommender systems[J].Physics Reports, 2012, 519(1): 1-49.
[4] Berge C. Graphs and Hypergraphs[M].Amsterdam: North-Holland Publishing Company, 1973.
[5] Zhang Z K, Liu C. A hypergraph model of social tagging networks[J].Journal of Statistical Mechanics: Theory and Experiment, 2010, (10): P10005.
[6] 裴伟东, 夏玮, 王全来,等. 多三角形结构动态复杂网络演化模型及其稳定性分析[J].计算机工程与应用, 2011, 47(23): 41-44.
Pei Weidong, Xia Wei, Wang Quanlai, et al. Study of dynamic complex network evolving models with multi-triangular structure[J].Computer Engineering and Applications, 2011, 47(23): 41-44.
[7] Wang J W, Rong L L, Deng Q H, et al. Evolving hypernetwork model[J].The European Physical Journal B-Condensed Matter and Complex Systems, 2010, 77(4): 493-498.
[8] 胡枫, 赵海兴, 马秀娟. 一种超网络演化模型构建及特性分析[J].中国科学, 2013, 43(1): 16-22.
Hu Feng, Zhao HaiXing, Ma XiuJuan. An evolving hypernetwork model and its properties[J].Scientia Sinica:Physica, Mechanica & Astronomica, 2013, 43 (1): 16-22.
[9] Yang G Y, Hu Z L, Liu J G. Knowledge diffusion in the collaboration hypernetwork[J].Physica A: Statistical Mechanics and its Applications, 2015, 419: 429-436.
[10] 郭进利, 祝昕昀.超网络中标度律的涌现[J].物理学报, 2014, 63(9): 90207.
Guo Jinli, Zhu Xinyun. Emergence of Scaling in Hypernetworks[J].Acta Physica Sinica, 2014, 63(9): 90207.
[11] 郭进利. 非均齐超网络中标度律的涌现——富者愈富导致幂律分布吗[J].物理学报, 2014, 63(20): 208901.
Guo Jinli. Emergence of scaling in non-uniform hypernetworks——does “the rich get richer” lead to a power-law distribution[J].Acta Physica Sinica, 2014, 63(20): 208901.
[12] Liu Z, Lai Y C, Ye N, et al. Connectivity distribution and attack tolerance of general networks with both preferential and random attachments[J].Physics Letters A, 2002, 303(5): 337-344.
[13] Li X, Chen G. A local-world evolving network model[J].Physica A: Statistical Mechanics and its Applications, 2003, 328(1): 274-286.
[14] Zhang P P, Chen K, He Y, et al. Model and empirical study on some collaboration networks[J].Physica A: Statistical Mechanics and its applications, 2006, 360(2): 599-616.
[15] Fu C H, Zhang Z P, Chang H, et al. A kind of collaboration-competition networks[J].Physica A: Statistical Mechanics and its Applications, 2008, 387(5): 1411-1420.
[16] Estrada E, Rodriguez-Velazquez J A. Subgraph centrality in complex networks[J].Physical Review E, 2005, 71(5): 056103.
[17] Estrada E, Rodriguez-Velazquez J A. Subgraph centrality and clustering in complex hyper-networks[J].Physica A:Statistical Mechanics and its Applications, 2006, 364: 581-594.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[4] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[5] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[6] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[7] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[8] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[9] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[10] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[11] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[12] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
[13] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[14] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[15] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed