Adaptive Sliding Mode Fault-tolerant Control for Chaotic Systems with Network Faults
LUO Sunxiaoyu1, ZHU Kexin1, CHEN Tianzhi1, ZHAO Fuyu2,3, ZHAO Liang1
1. College of Automation, Qingdao University, Qingdao 266071, China; 2. Shandong Mingyuan Intelligent Equipment Co, LTD, Zaozhuang 277400, China; 3. College of Electrical Engineering and Automation, Shandong University of Science and Technology,Qingdao 266590, China
Abstract:A novel adaptive sliding mode control strategy is proposed for a class of chaotic systems with the signal attenuation, network degradation, and nonlinear coupling characteristics, to solve the problem of robust fault-tolerant control and synchronization of chaotic systems. An integral sliding manifold for chaotic synchronization is presented, and an adaptive law is designed to estimate the control gain, and the updated control gain and integral gain are used to construct an adaptive sliding mode controller. Based on the Lyapunov stability theory, it is proved that the designed controller can ensure the asymptotic synchronization of chaotic systems with faults and perturbed couplings. The effectiveness and applicability of the proposed method are verified by the numerical simulation, which provides a new idea for the robust fault-tolerant control and synchronization of chaotic systems.
[1] ARENAS A, DIAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008,469: 93153. [2] LEE S M, CHOI S J, WON S C. Synchronization for chaotic Lur’e systems with sector restricted nonlinearities via delayed feedback control[J]. Nonlinear Dynamics, 2010, 9: 277288. [3] LEE T H, WU Z G, PARK J H. Synchronization of a complex dynamical network with coupling time-varying delays via sampled-data control[J]. Applied Mathematics and Computation, 2012, 219(3): 13541366. [4] ZHOU J, WANG Q. Convergence speed in distributed consensus over dynamically switching random networks[J]. Automatica, 2009, 45(6): 14551461. [5] JIN X Z, YANG G H. Adaptive synchronization of a class of uncertain complex networks against network deterioration[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58(6): 13961409. [6] JIN X Z, YANG G H. Robust adaptive synchronization of uncertain and delayed dynamical complex networks with faulty network[J]. Chinese Physics B, 2010, 19(8): 080508. [7] JIN X Z, YANG G H, CHE W W. Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 13451355. [8] SONG Q. Synchronization analysis in an array of asymmetric neural networks with time-varying delays and nonlinear coupling[J]. Applied Mathematics and Computation, 2010, 216(5): 16051613. [9] LIU X, CHEN T. Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 381: 8292. [10] WANG Z, WANG Y, LIU Y. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays[J]. IEEE Transactions on Neural Networks, 2009, 21(1): 1125. [11] ZHOU J, LU J, LU J. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Transactions on Automatic Control, 2006, 51(4): 652656. [12] LI Z, CHEN G. Robust adaptive synchronization of uncertain dynamical networks[J]. Physics Letters A,2004,324(2/3): 166178. [13] XU Y, ZHOU W, SUN W. Adaptive synchronization of uncertain chaotic systems with adaptive scaling function[J]. Journal of the Franklin Institute, 2011, 348(9): 24062416. [14] LIU T, ZHAO J, HILL D J. Synchronization of complex delayed dynamical networks with nonlinearly coupled nodes[J]. Chaos, Solitons & Fractals, 2009, 40(3): 15061519. [15] BIAN Q, YAO H. Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(10): 40894098. [16] JI D H, PARK J H, WON S C. Master-slave synchronization of Lur'e systems with sector and slope restricted nonlinearities[J]. Physics Letters A, 2009, 373(11): 10441050. [17] LEE T H, PARK J H, LEE S M, et al. Robust synchronisation of chaotic systems with randomly occurring uncertainties via stochastic sampled-data control[J] , International Journal of Control, 2013, 86: 107119. [18] BOWONG S, KAKMENI F M M. Synchronization of uncertain chaotic systems via backstepping approach[J]. Chaos, Solitons & Fractals, 2004, 21(4): 9991011. [19] AZEMI A, YAZ E E. Sliding-mode adaptive observer approach to chaotic synchronization[J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(4): 758765. [20] YAU H T. Design of adaptive sliding mode controller for chaos synchronization with uncertainties[J]. Chaos, Solitons & Fractals, 2004, 22(2): 341347. [21] YANG C C. Synchronization of second-order chaotic systems via adaptive terminal sliding mode control with input nonlinearity[J]. Journal of the Franklin Institute, 2012, 349(6): 20192032. [22] KARIMI H R. A sliding mode approach to H∞ synchronization of master-slave time-delay systems with Markovian jumping parameters and nonlinear uncertainties[J]. Journal of the Franklin Institute, 2012, 349(4): 14801496. [23] LI J, LI W, LI Q. Sliding mode control for uncertain chaotic systems with input nonlinearity[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 341348. [24] ZRIBI M, SMAOUI N, SALIM H. Synchronization of the unified chaotic systems using a sliding mode controller[J]. Chaos, Solitons & Fractals, 2009, 42(5): 31973209. [25] JIANG B, GAO Z, SHI P, et al. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2010, 18: 10001007. [26] YANG G H, YE D. Reliable Control of Linear Systems With Adaptive Mechanism[J]. IEEE Transactions on Automatic Control, 2009, 55(1): 242247. [27] KAR S, MOURA J M E. Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise[J]. IEEE Transactions on Signal Processing, 2009, 59: 355369. [28] JIN X Z, YANG G H, CHE W W. Adaptive synchronization of master-slave large-scale systems against bias actuators and network attenuations[J]. International Journal of Control, Automation and Systems, 2012, 10(6): 11021110. [29] IOANNOU P A, SUN J. Robust adaptive control[M]. Upper Saddle River, NJ: PTR Prentice-Hall, 1996. [30] LANGBORT C, CHANDRA R S, DANDREA R. Distributed control design for systems interconnected over an arbitrary graph[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 15021519. [31] 闫安,宋运忠,离散事件系统中的攻击检测和修复[J]. 复杂系统与复杂性科学, 2020, 19(4) : 99106. YAN A, SONG Y Z. Atack detection and repair in discrete event systems[J]. Complex Systems and Complexity Science, 2020, 8(2) : 99106. [32] 陈佳音,刘国军,复杂动态网络容错同步控制研究[J]. 复杂系统与复杂性科学, 2020, 19(3) : 5664. CHEN J Y, LIU G J. Fault gtolerant synchronization control for complex dynamical networks[J]. Complex Systems and Complexity Science, 2020, 19(3) : 5664.