Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (1): 56-61    DOI: 10.13306/j.1672-3813.2018.01.008
  本期目录 | 过刊浏览 | 高级检索 |
离散时间多智能体系统群集运动的快速收敛
杨怡泽1,2, 杨洪勇1, 刘凡1
1.鲁东大学信息与电气工程学院,山东 烟台 264025;
2.新南威尔士大学电气工程与信息学院,澳大利亚 悉尼
Fast Convergence for Flocking Motion of Discrete Time Multi-Agent Systems
YANG Yize,YANG Hongyong,LIU Fan
1.School of Information and Electrical Engineering, Ludong University, Yantai 264025, China;
2.School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, Australia
全文: PDF(643 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对具有干扰的多智能体系统的离散时间群集运动问题,提出了一种有限时间收敛的包容控制算法。运用现代控制理论、代数图论和线性矩阵不等式等分析工具对所提出的控制算法进行理论分析,得到了具有干扰的离散时间多智能体系统有限时间内实现群集运动的收敛条件。分析了动态多智能体实现包容控制的运动状态,同时讨论了该系统在理想情况下达到有限时间收敛的充分条件。最后,系统仿真验证了所得结论的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨怡泽
杨洪勇
刘凡
关键词 多智能体离散系统群集运动有限时间    
Abstract:As a main application branch of distributed systems, the dynamic characteristics of multi-agent systems have attracted the attention of researchers in many fields. For discrete-time flocking problems of networked systems with multiple leaders, a kind of containment control algorithms converged in finite time is presented in this paper. Based on modern control theory, algebraic graph theory and linear matrix inequality, the proposed control algorithm is analyzed theoretically. The convergence condition is also obtained to ensure the flocking motion in the finite time for discrete-time multi-agent systems. The motion state of the dynamic multi-agent systems to realize the containment control is analyzed. The sufficient condition of the system to achieve finite time convergence is discussed under ideal conditions. Finally, the system simulation results are given to illustrate the correctness of the conclusion.
Key wordsmulti-agent    discrete-time systems    flocking motion    finite time
收稿日期: 2017-12-02      出版日期: 2019-01-10
ZTFLH:  R192.6  
基金资助:国家自然科学基金(61673200)
通讯作者: 杨洪勇(1967),男,山东德州人,博士,教授,主要研究方向为复杂网络、多智能体编队控制等。   
作者简介: 杨怡泽(1994),男,山东德州人,硕士研究生,主要研究方向为群集运动、包容控制等。
引用本文:   
杨怡泽, 杨洪勇, 刘凡. 离散时间多智能体系统群集运动的快速收敛[J]. 复杂系统与复杂性科学, 2018, 15(1): 56-61.
YANG Yize,YANG Hongyong,LIU Fan. Fast Convergence for Flocking Motion of Discrete Time Multi-Agent Systems. Complex Systems and Complexity Science, 2018, 15(1): 56-61.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.01.008      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I1/56
[1]Yang H Y, Tian S W, Zhang S Y. Consensus of multiagent systems with heterogeneous delays and leaderfollowing[J]. Acta Electronica Sinica, 2011, 39(4):872876.
[2]Liu C L, Tian Y P. Survey on consensus problem of multi-agent systems with time delays[J]. Control & Decision, 2009, 24(11):16011600.
[3]Zhou B, Liao X. Leader-following second-order consensus in multi-agent systems with sampled data via pinning control[J]. Nonlinear Dynamics, 2014, 78(1):555569.
[4]Zhou B, Liao X, Huang T, et al. Event-based semiglobal consensus of homogenous linear multi-agent systems subject to input saturation[J]. Asian Journal of Control, 2017, 19.
[5]Yang S, Liao X, Liu Y. Second-order consensus in directed networks of identical nonlinear dynamics via impulsive control[J]. Neuro computing, 2015, 179(2016):290297.
[6]Wang Z X, Da-Jun D U, Fei M R. Average consensus in directed networks of multi-agents with uncertain time-varying delays[J]. Acta Automatica Sinica, 2014, 40(11):26022608.
[7]Jiang F, Wang L. Finite-time information consensus for multi-agent systems with fixed and switching topologies [J]. Physica D Nonlinear Phenomena, 2009, 238(16):15501560.
[8]Sun Feng-Lan, Zhu Wei. Finite-time consensus for leader-following multi-agent systems over switching network topologies[J]. Chin Phys B,2013, 22(11) : 110204(17).
[9]Zhu Y K, Guan X P, Luo X Y. Finite-time consensus of heterogeneous multi- agent systems[J]. Chin Phys B,2013, 22(3): 038901:16.
[10] Fang W, Xin C, Yong H E, et al. Finite-time consensus control of second-order multi-agent systems with jointly-connected topologies[J]. Control Theory & Applications, 2014.
[11] 肖秋云. 多智能体系统有限时间一致性若干问题研究[D]. 无锡:江南大学, 2015.
[12] Ding S, Li S. A survey for finite-time control problems[J]. Control & Decision, 2011, 26(2):161169.
[13] Liu H Y, Cheng L, Tan M, et al. Containment control of continuous-time linear multi-agent systems with aperiodic sample[J]. Automatica, 2015, 57: 7884.
[14] Li L, Fang H. Consensus tracking of leader-following multi-agent systems with sampling delay[J]. Journal of Huazhong University of Science & Technology, 2012, 40(8):8892.
[15] Zhu Lin. Finite-time boundedness in a kind of uncertain discrete systems[J]. Journal of Nanchang Institute of Technology, 2014(6): 3841.
[16] Yang S, Liao X, Liu Y, et al. Consensus of delayed multi-agent dynamical systems with stochastic perturbation via impulsive approach[J]. Neural Computing & Applications,2017, 28(Suppl 1):S647S657.
[17] Pan T, Mo L, Cao X. Mean square consensus of multi-agent systems under markovian switching with colored noises [J]. Control Theory & Applications, 2016, 33(3):361367.
[1] 方海旭, 赵继军. 近20年中国麻疹的流行与防控[J]. 复杂系统与复杂性科学, 2018, 15(1): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed