Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (2): 76-85    DOI: 10.13306/j.1672-3813.2020.02.009
  本期目录 | 过刊浏览 | 高级检索 |
产学研视角下高技术产业成长系统动力学研究
李培哲1, 2
1. 南京航空航天大学经济与管理学院,南京 210016;
2. 山东政法学院商学院,济南 250014
Research on the System Dynamics of High-Tech Industry Growth from the Perspective of Industry-University-Research
LI Peizhe1, 2
1. College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2. School of Business, Shan Dong University of Political science and Law, Jinan 250014, China
全文: PDF(2016 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探索高技术产业成长的内在机理和规律,以产学研为视角,运用系统动力学方法构建了高技术产业成长系统动力学模型并进行模拟仿真,分析了影响高技术产业成长的关键因素及其影响程度。结果表明:企业R&D经费投入、人才政策支持力度和科技中介服务能力等对新产品销售收入有较为显著的正影响,人才政策支持力度和企业R&D经费投入对专利数量的正影响较为显著;综合来看,企业R&D经费投入与科技人才投入是影响高技术产业成长的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李培哲
关键词 高技术产业复杂系统成长系统动力学仿真    
Abstract:In order to explore the internal mechanism and law of the growth of high-tech industry, from the perspective of industry- university-research, the system dynamics model of the growth of high-tech industry is constructed and simulated, and the key factors affecting the growth of high-tech industry and their influence degree are analyzed. The results show that the R&D investment, talent policy support and technology intermediary service ability of enterprises have a significant positive impact on the sales revenue of new products, and the talent policy support and R&D investment of enterprises have a significant positive impact on the number of patents. In a comprehensive view, R&D investment and technology talent investment are the main factors affecting the growth of high-tech industry.
Key wordshigh-tech industry    complex system    growth    system dynamics    simulation
     出版日期: 2020-06-24
ZTFLH:  G301  
基金资助:国家自然科学基金(71573124,71503103);山东省软科学重大项目(2019RZB01167);山东省社会科学规划项目(14BGLJ07,17CGLJ25);山东省人文社会科学项目(19-ZZ-GL-04);山东政法学院科研项目(2019Q03A)
作者简介: 李培哲(1981),男,山东滨州人,博士研究生,副教授,主要研究方向为复杂系统、创新管理等。
引用本文:   
李培哲. 产学研视角下高技术产业成长系统动力学研究[J]. 复杂系统与复杂性科学, 2020, 17(2): 76-85.
LI Peizhe. Research on the System Dynamics of High-Tech Industry Growth from the Perspective of Industry-University-Research. Complex Systems and Complexity Science, 2020, 17(2): 76-85.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.02.009      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I2/76
[1]俞立平,王作功,胡林瑶.高技术产业创新速度的影响机制研究[J].科学学研究,2018,36(5):913921.
Yu Liping, Wang Zuogong, Hu linyao. Research on influencing mechanism of innovation speed in high-tech industry[J]. Studies in Science of Science, 2018,36(5):913921.
[2]王玉梅.产学研知识联盟运行和发展机理的系统动力学分析[J].情报杂志,2009,28(9):135139.
Wang Yumei. Analysis on operation and development mechanism of university-industry-research institute knowledge alliance using system dynamics[J]. Journal of Intelligence, 2009,28(9):135139.
[3]Dawson P. Beyond conventional change models: a processual perspective [J].Asia Pacific Journal of Human Resources, 1996, 34(2):5770.
[4]Jacobsson S, Bergek A. Transforming the energy sector: The evolution of the technological systems in renewable energy technology[J].Industrial and Corporate Change, 2004,13(5):815849.
[5]Wright M, Clarysse B, Lockett A, et al. Mid-range universities' linkages with industry: knowledge types and the role of intermediaries[J].Research policy, 2008,37(8):12051223.
[6]储德银,张同斌.自主研发、技术引进与高新技术产业成长[J].科研管理, 2013,34(11):5360,113.
Chu Deyin, Zhang Tongbin. Independent R&D, technology import and high-tech industry growth[J]. Science Research Management, 2013,34(11):5360,113.
[7]王丽平,栾慧明.组织距离、价值共创与产学研合作创新绩效[J].管理学报, 2019,16(5):704711.
Wang Liping, Luan Huiming. Organization distance, value co-creation collaborative innovation and industry-university- research performance[J]. Chinese Journal of Management, 2019,16(5):704711.
[8]卢文光,常金平,黄鲁成.新兴技术产业化潜力成长性的动态评价研究[J].科学学与科学技术管理,2009,30(9):59.
Lu Wenguang, Chang Jinping, Huang Lucheng. Studies on emerging technology industrialization potential growth dynamic evaluation[J]. Science of Science and Management of S & T,2009,30(9):59.
[9]曹兴,张云,张伟.战略性新兴产业自主技术创新能力形成的动力体系[J].系统工程, 2013,31(7):7886.
Cao Xing, Zhang Yun, Zhang Wei. The power system of the formation of independent technological innovation capability of strategic emerging industry[J]. Systems Engineering, 2013,31(7):7886.
[10] 胡平,邵鹏,温春龙.网络特征对创新产业集群成长的影响研究——以珠三角地区信息服务产业为例[J].科学学与科学技术管理,2013,34(12):5562.
Hu Ping, Shao Peng, Wen Chunlong. Influence of network characteristics on innovative industry cluster growth: take PRD information services industry cluster as an example[J]. Science of Science and Management of S.& T., 2013,34(12):5562.
[11] Mowery D C, Sampat B N. The Bayh-Dole act of 1980 and university-industry technology transfer: a model for other DECD governments [J]. Journal of Technology Transfer, 2005.30(1/2):115127.
[12] 解学梅,孙科杰.产业技术创新战略联盟长效合作机制:基于144家联盟的实证研究[J].系统管理学报,2018,27(3):401413.
Xie Xuemei, Sun Kejie. Cooperation mechanisms of strategic alliance of technology innovation: an empirical study based on industrial 144 alliances[J]. Journal of Systems & Management, 2018,27(3):401413.
[13] 李海超,衷文蓉.我国ICT产业成长能力评价研究[J].科学学与科学技术管理, 2013,34(6):119125.
Li Haichao, Zhong Wenrong. Evaluation study on growth ability of ICT industry in China[J]. Science of Science and Management of S.& T., 2013,34(6):119125.
[14] 游达明,李志鹏,杨晓辉.高新技术企业创新网络能力对创新网络绩效的影响路径[J].科学学与科学技术管理, 2015,36(2): 7082.
You Daming, Li Zhipeng, Yang Xiaohui . The influence path of high-tech enterprises innovation network capability on innovation network performance[J]. Science of Science and Management of S.& T., 2015,36(2):7082.
[15] 吴传荣,曾德明,陈英武.高技术企业技术创新网络的系统动力学建模与仿真[J].系统工程理论与实践,2010,30(4):587 593.
Wu Chuanrong, Zeng Deming, Chen Yingwu. Modeling and simulation of high-tech enterprises innovation networks using system dynamics[J]. Systems Engineering-Theory & Practice, 2010, 30(4):587593.
[16] 王其藩.系统动力学(修订版)[M].上海:上海财经大学出版社,2009:1935.
[17] 李慧嘉,严冠,刘志东,等.基于动态系统的网络社团线性探测算法[J].中国科学:数学,2017,47(2):241256.
Li Huijia, Yan Guan, Liu Zhidong, et al. A linear community detection algorithm based on dynamical system in networks[J]. Scientia Sinica (Mathematica), 2017,47(2):241256.
[18] 赖朝安.产品开发复杂系统建模及其动力学机制研究[J].复杂系统与复杂性科学, 2009,6(1):8693.
Lai Chaoan. Model of product development complex system and analysis of its dynamics mechanism[J].Complex Systems and Complexity Science, 2009,6(1):8693.
[19] 胡慧芳.供需交互响应下的战略性新兴产业成长机制——基于系统动力学的建模与仿真[J].厦门大学学报(哲学社会科学版),2017(5):123134.
Hu Huifang. Growth mechanisms of strategic emerging industries under the interactive response between supply and demand: modeling and simulation based on system dynamics[J]. Journal of Xiamen University(Arts & Social Sciences), 2017(5): 123134.
[20] 刘志迎,毕盛,谭敏.基于SD中国技术转移系统演化的动态模型研究[J].科学学研究, 2014,32(12):18111819.
Liu Zhiying, Bi Sheng, Tan min. Study on dynamic model of the technology transfer system evolution of China based on system dynamics[J]. Studies in Science of Science, 2014,32(12):18111819.
[21] 李慧嘉,李爱华,李慧颖.社团结构迭代快速探测算法[J].计算机学报,2017,40(4):970984.
Li Huijia, Li Aihua, Li Huiying. Fast community detection algorithm via dynamical iteration[J]. Chinese Journal of Computers, 2017,40(4):970984.
[22] 赵玉林,李文超.主导性高技术产业成长的系统动力学研究[J].经济问题探索,2009,(5):6572.
Zhao Yulin, Li Wenchao. Research on the system dynamics of leading high-tech industry growth[J]. Inquiry into Economic Issues, 2009,(5):6572.
[23] 李慧嘉,贾传亮,佘廉.基于本体关联网络的非常规突发事件案例快速提示方法[J].运筹与管理,2017,26(12):6876.
Li Huijia, Jia Chuanliang, She Lian. Quick tips technology of unconventional emergency based on ontology network analysis[J]. Operations Research and Management Science, 2017,26(12):6876.
[24] 胡军燕,朱桂龙,马莹莹.开放式创新下产学研合作影响因素的系统动力学分析[J].科学学与科学技术管理, 2011,32(8):4957.
Hu Junyan, Zhu Guilong, Ma Yingying. System dynamic analysis on influencing factors of industry-university-research cooperation in open innovation context[J]. Science of Science and Management of S & T, 2011,32(8):4957.
[1] 李春发, 薛楠楠, 王学敏, 来茜茜. “互联网+”手机回收模式影响因素:理论模型构建与SD仿真分析[J]. 复杂系统与复杂性科学, 2019, 16(4): 44-55.
[2] 李鹤龄, 王雅婷, 杨斌, 沈宏君. 完全开放系统的幂律分布及其适用对象[J]. 复杂系统与复杂性科学, 2019, 16(3): 71-78.
[3] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[4] 李春发, 王学敏, 来茜茜, 薛楠楠. “互联网+”手机回收模式缘何绩效不彰?——基于mABM的演化博弈仿真分析[J]. 复杂系统与复杂性科学, 2019, 16(1): 63-73.
[5] 杨泳, 徐开俊, 姚裕盛, 向宏辉, 吴佳益. 飞行训练网络抗毁性实证分析[J]. 复杂系统与复杂性科学, 2018, 15(4): 69-76.
[6] 肖琴, 罗帆. 机场外来物风险监管策略的演化博弈研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 18-25.
[7] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[8] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
[9] 蒲玮, 李雄. 基于能力组件的作战仿真Agent模块化结构设计[J]. 复杂系统与复杂性科学, 2017, 14(3): 45-57.
[10] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed