Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (1): 20-26    DOI: 10.13306/j.1672-3813.2022.01.003
  本期目录 | 过刊浏览 | 高级检索 |
社交网络中多领导者观点的博弈建模分析
闫晓雪, 纪志坚
青岛大学 a.自动化学院;b.山东省工业控制技术重点实验室,山东 青岛 266071
Game Modeling Analysis of Multi-leaders Opinion in Social Network
YAN Xiaoxue, JI Zhijian
a. School of Automation; b. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071,China
全文: PDF(2032 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 根据社交网络中存在个体受邻居影响这一因素,基于Friedkin-Johnsen模型提出了一种新的观点动力学模型。首先,以领导者为主体将智能体划分成若干个强连通结构的观点群体系统。然后,采用多领导者博弈控制在动态观点协同进化过程中加入领导者博弈策略,使得每个观点群体都形成最优的解决方案。为寻求最优控制策略,建立了耦合形式的哈密尔顿-雅可比-贝尔曼(HJB)方程。最后通过数值仿真,模拟社交网络中观点群体形成至稳定收敛。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫晓雪
纪志坚
关键词 社交网络划分多领导者博弈控制收敛    
Abstract:The paper presents a new opinion dynamic model based on the Friedkin-Johnsen model by studying the phenomenon that the human behaviours are usually influenced by their neighbours in social networks. Firstly, taking the leader as the main body, the agent is divided into several viewpoint group systems with strong connected structures. Secondly, multi-leaders game control is used to add leader game strategies to the progress of opinion dynamic and complex co-evolution, so that each opinion group can form an optimal solution. To look for the optimal control strategy, a coupled Hamilton-Jacobi-Bellman (HJB) equation is established. Finally, several simulations are used to illustrate the formation of opinion groups in social networks to stable convergence.
Key wordssocial networks    division    multi-leaders game control    convergence
收稿日期: 2021-03-20      出版日期: 2022-02-21
ZTFLH:  N94  
  O232  
基金资助:国家自然科学基金(61873136,62033007);山东省泰山学者攀登计划和山东省泰山学者支持计划(ts20190930)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统,复杂网络的分析与控制等。   
作者简介: 闫晓雪(1993-),女,山东聊城人,硕士研究生,主要研究方向为多智能体网络系统,社交网络观点动力学。
引用本文:   
闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
YAN Xiaoxue, JI Zhijian. Game Modeling Analysis of Multi-leaders Opinion in Social Network. Complex Systems and Complexity Science, 2022, 19(1): 20-26.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.01.003      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I1/20
[1] 王龙,杜金铭.多智能体协调控制的演化博弈方法[J].系统科学与数学,2016,36(3):302-318.
WANG L, DU J M. Evolutionary game method for multi agent coordinated control [J].Journal of Systems Science and Mathematical Sciences,2016,36(3):302-318.
[2] 尹红丽,纪志坚,张嗣瀛.复杂网络的可控性及算法[J].系统科学与数学,2015,35(11):1255-1263.
YIN H L, JI Z J, ZHANG S Y. Controllability and algorithm of complex networks [J]. Journal of Systems Science and Mathematical Sciences,2015,35(11):1255-1263.
[3] ANDERSON B D O,YE M B. Recent advances in the modelling and analysis of opinion dynamics on influence networks[J]. International Journal of Automation and Computing, 2019, 16(2):129-149.
[4] 王龙, 田野, 杜金铭. 社会网络上的观念动力学[J]. 中国科学:信息科学, 2018, 50(1):3209-3215.
WANG L, TIAN Y, DU J M. Conceptual dynamics on social networks [J]. Chinese Science: Information Science, 2018, 50 (1): 3209-3215.
[5] 郭雷. 不确定性动态系统的估计,控制与博弈[J]. 中国科学:信息科学, 2020, 50(9):53-70.
GUO L. Estimation, control and game of uncertain dynamic systems [J]. Chinese Science: Information Science, 2020, 50(9): 53-70.
[6] CHURCH R. Cybernetics, or control and communication in the animal and the machine by Norbert Wiener[J]. Journal of Symbolic Logic, 1949, 14(2): 127.
[7] ZINO L, YE M, CAO M. A two-layer model for coevolving opinion dynamics and collective decision-making in complex social systems[J]. 2020,30(8): 083107.
[8] LI Y, GUO L. Towards a theory of stochastic adaptive differential games[C] //50th IEEE Conference on Decision Control European Control Conference. orlando, FL, USA: IEEE, 2011:5041-5046.
[9] 刘举胜,何建佳,韩景倜,等.观点动力学研究现状及进展述评[J].复杂系统与复杂性科学,2021,18(2):9-20.
LIU J S, HE J J, HAN J T, et al. Review on the research status and progress of viewpoint dynamics [J]. Complex systems and complexity science, 2021,18 (2): 9-20.
[10] 袁硕, 郭雷. 随机自适应动态博弈[J]. 中国科学, 2016(10): 1367-1382.
YUAN S, GUO L. Stochastic adaptive dynamic game [J] Science of China, 2016(10): 1367-1382.
[11] NASH J F. Equilibrium points in N-Person games[J]. Proceedings of the National Academy of Sciences, 1950, 36(1):48-49.
[12] ABU-KHALAF M, LEWIS F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach[J]. Automatica, 2005, 41(5):779-791.
[13] VAMVOUDAKIS K G, LEWIS F L, HUDAS G R. Multi-agent differential graphical games: online adaptive learning solution for synchronization with optimality[J]. Automatica, 2012, 48(8):1598-1611.
[14] 刘永信, 陈志梅. 现代控制理论[M]. 北京: 北京大学出版社, 2006.
[15] GUAN Y, JI Z, ZHANG L, et al. Structural controllability of higher-order multi-agent systems under absolute and relative protocols. [C] // Proceedings of the 32nd Chinese Control Conference, Xi'an, China: IEEE,2013:6832-6837.
[16] PROSKURNIKOV A V, TEMPO R. A tutorial on modeling and analysis of dynamic social networks. Part II[J]. Annual Reviews in Control, 2018, 45:166-190.
[17] FRIEDKIN N E, JOHNSEN E C. Social influence and opinions[J]. Journal of Mathematical Sociology, 1990, 15(3/4):193-206.
[18] STRANG D, FRIEDKIN N E. A structural theory of social influence[J]. American Journal of Sociology, 1998, 45(1):162.
[19] PARSEGOV S E, PROSKURNIKOV A V, TEMPO R, et al. Novel multidimensional models of opinion dynamics in social networks[J]. IEEE Transactions on Automatic Control, 2017, 62(5):2270-2285.
[20] LIU S, JI Z J,YU H S, et al. LQR based optimal topology of hybrid-weighted multiagent systems[J]. Mathematical Problems in Engineering,2018(5):1-14.
[1] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[2] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[3] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[4] 韩博, 刘佳, 耿金花, 段法兵. 加权随机汇池网络中递归最小二乘算法研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 81-86.
[5] 景文腾, 耿金花, 韩博, 段法兵. 多阈值随机汇池网络自适应估计性能研究[J]. 复杂系统与复杂性科学, 2019, 16(3): 87-92.
[6] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
[7] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[8] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[9] 李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed