Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (2): 80-86    DOI: 10.13306/j.1672-3813.2022.02.010
  本期目录 | 过刊浏览 | 高级检索 |
基于时变参数的SCUIR传播模型的构建与研究
李冯, 宾晟, 孙更新
青岛大学计算机科学技术学院,山东 青岛 266071
Based on Time-varying Parameters
LI Feng, BIN Sheng, SUN Gengxin
School of Computer Science and Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1706 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于新型冠状病毒的传播特性,染病者不仅具有潜伏期且存在大量的无症状感染者,在经典SEIR模型的基础上,重新定义潜伏状态为密切接触状态,引入无症状感染状态,并考虑模型中状态转移参数会随着时间增长发生变化,提出了一种新的包含“易感状态,密切接触状态,无症状感染状态,确诊状态,移除状态”等五类状态的传播模型。利用湖北省真实疫情数据进行模型实验并对比结果,采用RMSE、MAPE值作为评价指标,结果表明,SCUIR模型的拟合精度有显著提升,与传统模型相比降低了8.3%~47.6%的拟合误差,并且可以计算出疫情中难以统计的隐藏数据,进一步刻画了疫情传播机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李冯
宾晟
孙更新
关键词 传播模型无症状感染COVID-19时变参数    
Abstract:Novel coronavirus is a new type of virus, and its transmission characteristics are different from previous virus. Infected people not only have an incubation period, but also a large number of asymptomatic infections. Based on the classic model SEIR, this study redefines the latent state as close contact state, introduces an asymptomatic state of infection, and the influence of time on the state transition parameters in the model is considered, proposed a new transmission model which includes five types of states: susceptible state, close contact state, asymptomatic infection state, infected state, and removed state. The model uses the actual epidemic data of Hubei Province to conduct experiments, and uses RMSE and MAPE as evaluation indicators to compare the experimental results. The results show that the fitting accuracy of the SCUIR model has been significantly improved. Compared with the traditional model, the fitting error is reduced by 8.3%~47.6%, and hidden data that is difficult to count in the epidemic can be calculated, which further characterizes the mechanism of epidemic transmission.
Key wordspropagation model    asymptomatic infection    COVID-19    time-varying parameters
收稿日期: 2021-04-26      出版日期: 2022-05-23
ZTFLH:  O29  
  TP391  
基金资助:山东省自然基金面上项目(ZR2017MG011);山东省社会科学规划项目(17CHLJ16)
通讯作者: 孙更新(1978-),男,山东青岛人,博士,副教授,主要研究方向为复杂网络中的传播动力学及相关传播模型。   
作者简介: 李冯(1997-),男,山东济宁人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
李冯, 宾晟, 孙更新. 基于时变参数的SCUIR传播模型的构建与研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 80-86.
LI Feng, BIN Sheng, SUN Gengxin. Based on Time-varying Parameters. Complex Systems and Complexity Science, 2022, 19(2): 80-86.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.02.010      或      http://fzkx.qdu.edu.cn/CN/Y2022/V19/I2/80
[1] 严阅,陈瑜,刘可伋,等.基于一类时滞动力学系统对新型冠状病毒肺炎疫情的建模和预测[J].中国科学:数学,2020,50(3):385-392.
YAN Y, CHEN Y, LIU K J, et al. Modeling and prediction of novel coronavirus pneumonia based on a kind of time delay dynamic system[J]. Science in China: Mathematics, 2020, 50(3):385-392.
[2] 桑茂盛,丁一,包铭磊,等.基于新冠病毒特征及防控措施的传播动力学模型[J].系统工程理论与实践,2021,41(1):124-133.
SANG M S, DING Y, BAO M L, et al. Transmission dynamics model based on the characteristics of the new coronavirus and prevention and control measures [J]. System Engineering Theory and Practice, 2021, 41(1): 124-133.
[3] 耿辉,徐安定,王晓艳,等.基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J].暨南大学学报(自然科学与医学版),2020,41(2):175-180.
GENG H, XU A D, WANG X Y, et al. Analysis of the role of related interventions in the new coronavirus pneumonia epidemic based on the SEIR model [J]. Journal of Ji'nan University (Natural Science and Medicine Edition), 2020, 41(2): 175-180.
[4] NDAÏROU F, AREA I, NIETO J, et al. Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2020, 135: 109846.
[5] 曹盛力,冯沛华,时朋朋.修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J].浙江大学学报(医学版),2020,49(2):178-184.
CAO S L, FENG P H, SHI P P. Modified SEIR infectious disease dynamics model applied to the prediction and evaluation of COVID-19 epidemic situation in Hubei Province [J]. Journal of Zhejiang University (Medical Edition), 2020, 49(2):178-184.
[6] DE SOUZA S L T, BATISTA A M, CALDAS I L, et al. Dynamics of epidemics: Impact of easing restrictions and control of infection spread.[J]. Chaos, solitons, and fractals, 2021,142: 110431.
[7] KERMACK W O, MCKENDRICK A G. Contributions to the mathematical theory of epidemics--I. 1927.[J]. Bulletin of mathematical biology, 1991, 53(1/2): 33-55.
[8] ANDERSON R M, MAY R M. Infectious Diseases of Humans: Dynamics and Control[M]. Oxford: Oxford University. Press,1991:99.
[9] 喻孜,张贵清,刘庆珍,等.基于时变参数-SIR模型的COVID-19疫情评估和预测[J].电子科技大学学报,2020,49(3):357-361.
YU Z, ZHANG G Q, LIU Q Z, et al. Evaluation and prediction of COVID-19 epidemic based on time-varying parameter-SIR model[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 357-361.
[10] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. The Lancet, 2020, 395(10225): 689-697.
[11] 林俊锋.基于引入隐形传播者的SEIR模型的COVID-19疫情分析和预测[J].电子科技大学学报,2020,49(3):375-382.
LIN J F. Analysis and prediction of COVID-19 epidemic based on SEIR model with invisible communicator[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 375-382.
[12] LIU Z, MAGAL P, SEYDI O, et al. Understanding unreported cases in the 2019-ncov epidemic outbreak in Wuhan, China, and the importance of major public health interventions[J]. SSRN, 2020,9(3): 50.
[13] YUAN R, MA Y, SHEN C, et al. Global dynamics of COVID-19 epidemic model with recessive infection and isolation.[J]. Mathematical Biosciences and Engineering: MBE, 2021, 18(2): 1833-1844.
[14] KOROLEV I. Identification and estimation of the SEIRD epidemic model for COVID-19[J]. Journal of Econometrics, 2021, 220(1): 013155.
[15] ZHAI Z M, LONG Y S, TANG M, er al. Optimal inference of the start of COVID-19[J]. Phys Rev Research,2021, 3(1):013155.
[1] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[2] 席周慧, 孟德霖, 赵继军. 钻石公主号邮轮上COVID-19传播动态的研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 67-73.
[3] 李稚, 宋敏. 基于“病毒变异”和“环境传人”因素的COVID-19疫情传播动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 1-8.
[4] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[5] 周武略, 白迪, 赵继军. 武汉市发生的新冠病毒肺炎建模研究分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed