Reconnection Probability of Small World Networks Affects the Ability of Spiral Wave to Go Through Defect
WANG Linnaa, TANG Wenzhonga, WANG Yanyangb, ZHANG Mingminga
a. School of Computer Science, Beihang University, Beijing 100191, China; b. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
Abstract:Based on improved Greenberg-Hastings cellular automaton model, this paper built a complex neural network model and studied the effects of reconnection probability p on the ability of penetrating defect of spiral wave under two kinds of classical small world network. It shows that when p is less than or equals a fixed value pc, the ability of penetrating defect of spiral waves will markedly enhance with the increase of reconnection probability p; When p is greater than the pc, the ability of penetrating defect of spiral waves will not enhance with the increase of p.
王林娜, 唐文忠, 王衍洋, 张明明. 小世界网络重联概率对螺旋波穿透缺陷的影响[J]. 复杂系统与复杂性科学, 2016, 13(3): 76-80.
WANG Linna, TANG Wenzhong, WANG Yanyang, ZHANG Mingming. Reconnection Probability of Small World Networks Affects the Ability of Spiral Wave to Go Through Defect[J]. Complex Systems and Complexity Science, 2016, 13(3): 76-80.
[1] Biktashev V N, Holden A V. Reentrant waves and their elimination in a model of mammalian ventricular tissue[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 1998, 8(1): 48-56. [2] Ouyang Q, Flesselles J M. Transition from spirals to defect turbulence driven by a convective instability[J].Nature, 1996, 379(6561):143-146. [3] Ouyang Q, Swinney H L, Li G. Transition from spirals to defect-mediated turbulence driven by a doppler instability.[J].Physical Review Letters, 2000, 84(5):1047-1050. [4] Lu Q Z, Qi O. Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system[J].Physical Review Letters, 2000, 85(8):1650-1653. [5] Stamp A T, Osipov G V, Collins J J. Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers.[J].Chaos, 2002, 12(3):931-940. [6] Bar M, Brusch L, Or-Guil M. Mechanism for spiral wave breakup in excitable and oscillatory media[J].Phys Rev Lett, 2004;92:119801. [7] Li B W, Gao X, Deng Z G, et al. Circular-interface selected wave patterns in the complex Ginzburg-Landau equation[J].Epl, 2010, 91(3):34001-34006(6). [8] Luo J M, Zhan M. Electric-field-induced wave groupings of spiral waves with oscillatory dispersion relation[J].Physical Review E, 2008, 78(1):1302-1314. [9] Wang X F, Li X C, Dong Lifang. Controlling spiral wave with target wave in oscillatory systems[J].Acta Physica Sinica, 2007, 16(9):2640-2643. [10] 尹小舟, 刘勇. 非连续反馈控制激发介质中的螺旋波[J].物理学报, 2008, 57(11):6844-6851. Yin Xiaozhou, Liu Yong. Suppression of spiral wave in the excitable media by using intermittent feedback scheme[J].Acta Phys Sin, 2008, 57(11):6844-6851. [11] Ma J, Jin W Y, Yi M, et al. Control of spiral wave and turbulence in the time-varied reaction-diffusion system[J].Acta Physica Sinica, 2008, 57(5):2832-2841. [12] Ma J, Ying H P, Liu Y, et al. Development and transition of spiral wave in the coupled Hindmarsh-Rose neurons in two-dimensional space[J].Acta Phys Sin, 2009, 18(1):98-105. [13] Zhang Lisheng, Deng Minyi, Kong Lingjiang, et al. Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics: cellular automaton simulations for target waves in excitable media[J].Communications in Theoretical Physics, 2010, 53(1):171-174. [14] Wasserman S. Social Network Analysis: Methods and Applications[M].Cambridge: Cambridge University Press, 1994. [15] Wu J, Watts D J. Small worlds: the dynamics of networks between order and randomness.[J].Sigmod Record, 1999, 31(2):74-75. [16] Daihai H, Gang H, Meng Z, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections.[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(5Pt2):126-126. [17] Orit S, Ido G, Ronen S, et al. Morphological characterization of in vitro neuronal networks[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(2):1039-1044. [18] 甘正宁, 马军, 张国勇, 等. 小世界网络上螺旋波失稳的研究[J].物理学报, 2008, 57(9), 5400-5406. Gan Zhengning, Ma Jun, Zhang Guoyong, et al. Instability of spiral wave in small-world networks[J].Acta Phys Sin, 2008, 57(9), 5400-5406. [19] 马军, 唐军, 张爱华, 等. 二维格子神经元网络中螺旋波的鲁棒性和破裂[J].中国科学, 2009, (12):1754-1761. Ma Jun, Tang Jun, Zhang Aihua, et al. Robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons[J].Sci China Phys Mech Astron, 2009, (12):1754-1761. [20] 宋宣玉, 钱郁, 陈光旨,等. 不同缺陷对周期螺旋波的影响[J].广西物理, 2007,(1):7. Song Xunayu, Qian Yu, Chen Guangzhi, et al. The effect of different defects on the periodic spiral wave[J].Guangxi Physics, 2007,(1):7. [21] Hendrey M, Ott E, Antonsen T M. Effect of inhomogeneity on spiral wave dynamics[J].Physical Review Letters, 1999, 82(4): 859-862. [22] Hendrey M, Ott E, Antonsen T M. Spiral wave dynamics in oscillatory inhomogeneous media[J].Physical Review E, 2000, 61(5): 4943. [23] Xie F, Qu Z, Weiss J N, et al. Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium[J].Physical Review E, 2001, 63(3): 031905. [24] 田昌海, 邓敏艺, 孔令江, 等. 螺旋波动力学性质的元胞自动机有向小世界网络研究[J].物理学报, 2011, 60(8): 80505-080505. Tian Changhai, Deng Minzhi, Kong Lingjiang, et al. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves[J].Acta Phys Sin, 2011, 60(8):80505-080505. [25] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因[J].物理学报, 2009, 58(3): 1491-1496. Dai Yu, Tang Guoning. Some origins of the low excitability of a discrete excitable medium[J].Acta Phys Sin, 2009, 58(3):1491-1496.