Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 76-80    DOI: 10.13306/j.1672-3813.2016.03.010
  本期目录 | 过刊浏览 | 高级检索 |
小世界网络重联概率对螺旋波穿透缺陷的影响
王林娜a, 唐文忠a, 王衍洋b, 张明明a
北京航空航天大学 a.计算机学院;b.航空科学与工程学院,北京 100191
Reconnection Probability of Small World Networks Affects the Ability of Spiral Wave to Go Through Defect
WANG Linnaa, TANG Wenzhonga, WANG Yanyangb, ZHANG Mingminga
a. School of Computer Science, Beihang University, Beijing 100191, China; b. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1032 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于改进的Greenberg-Hastings元胞自动机模型,构建了复杂网络模型,研究了两种经典小世界网络算法下的重联概率p对螺旋波穿透缺陷能力的影响。实验发现,当p小于等于某个定值pc时,随着重联概率p的增大,螺旋波穿透缺陷的能力显著增强;当p大于pc时,螺旋波穿透缺陷的能力不再随着p的增大而增强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王林娜
唐文忠
王衍洋
张明明
关键词 小世界网络重联概率螺旋波神经网络元胞自动机    
Abstract:Based on improved Greenberg-Hastings cellular automaton model, this paper built a complex neural network model and studied the effects of reconnection probability p on the ability of penetrating defect of spiral wave under two kinds of classical small world network. It shows that when p is less than or equals a fixed value pc, the ability of penetrating defect of spiral waves will markedly enhance with the increase of reconnection probability p; When p is greater than the pc, the ability of penetrating defect of spiral waves will not enhance with the increase of p.
Key wordssmall world network    reconnection probability    spiral wave    nral ntwork    cellular atomat
收稿日期: 2014-04-25      出版日期: 2025-02-25
ZTFLH:  TP399  
作者简介: 王林娜(1990-),女,河南鹤壁人,硕士研究生,主要研究方向为复杂网络。
引用本文:   
王林娜, 唐文忠, 王衍洋, 张明明. 小世界网络重联概率对螺旋波穿透缺陷的影响[J]. 复杂系统与复杂性科学, 2016, 13(3): 76-80.
WANG Linna, TANG Wenzhong, WANG Yanyang, ZHANG Mingming. Reconnection Probability of Small World Networks Affects the Ability of Spiral Wave to Go Through Defect[J]. Complex Systems and Complexity Science, 2016, 13(3): 76-80.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.010      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/76
[1] Biktashev V N, Holden A V. Reentrant waves and their elimination in a model of mammalian ventricular tissue[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 1998, 8(1): 48-56.
[2] Ouyang Q, Flesselles J M. Transition from spirals to defect turbulence driven by a convective instability[J].Nature, 1996, 379(6561):143-146.
[3] Ouyang Q, Swinney H L, Li G. Transition from spirals to defect-mediated turbulence driven by a doppler instability.[J].Physical Review Letters, 2000, 84(5):1047-1050.
[4] Lu Q Z, Qi O. Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system[J].Physical Review Letters, 2000, 85(8):1650-1653.
[5] Stamp A T, Osipov G V, Collins J J. Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers.[J].Chaos, 2002, 12(3):931-940.
[6] Bar M, Brusch L, Or-Guil M. Mechanism for spiral wave breakup in excitable and oscillatory media[J].Phys Rev Lett, 2004;92:119801.
[7] Li B W, Gao X, Deng Z G, et al. Circular-interface selected wave patterns in the complex Ginzburg-Landau equation[J].Epl, 2010, 91(3):34001-34006(6).
[8] Luo J M, Zhan M. Electric-field-induced wave groupings of spiral waves with oscillatory dispersion relation[J].Physical Review E, 2008, 78(1):1302-1314.
[9] Wang X F, Li X C, Dong Lifang. Controlling spiral wave with target wave in oscillatory systems[J].Acta Physica Sinica, 2007, 16(9):2640-2643.
[10] 尹小舟, 刘勇. 非连续反馈控制激发介质中的螺旋波[J].物理学报, 2008, 57(11):6844-6851.
Yin Xiaozhou, Liu Yong. Suppression of spiral wave in the excitable media by using intermittent feedback scheme[J].Acta Phys Sin, 2008, 57(11):6844-6851.
[11] Ma J, Jin W Y, Yi M, et al. Control of spiral wave and turbulence in the time-varied reaction-diffusion system[J].Acta Physica Sinica, 2008, 57(5):2832-2841.
[12] Ma J, Ying H P, Liu Y, et al. Development and transition of spiral wave in the coupled Hindmarsh-Rose neurons in two-dimensional space[J].Acta Phys Sin, 2009, 18(1):98-105.
[13] Zhang Lisheng, Deng Minyi, Kong Lingjiang, et al. Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics: cellular automaton simulations for target waves in excitable media[J].Communications in Theoretical Physics, 2010, 53(1):171-174.
[14] Wasserman S. Social Network Analysis: Methods and Applications[M].Cambridge: Cambridge University Press, 1994.
[15] Wu J, Watts D J. Small worlds: the dynamics of networks between order and randomness.[J].Sigmod Record, 1999, 31(2):74-75.
[16] Daihai H, Gang H, Meng Z, et al. Pattern formation of spiral waves in an inhomogeneous medium with small-world connections.[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(5Pt2):126-126.
[17] Orit S, Ido G, Ronen S, et al. Morphological characterization of in vitro neuronal networks[J].Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(2):1039-1044.
[18] 甘正宁, 马军, 张国勇, 等. 小世界网络上螺旋波失稳的研究[J].物理学报, 2008, 57(9), 5400-5406.
Gan Zhengning, Ma Jun, Zhang Guoyong, et al. Instability of spiral wave in small-world networks[J].Acta Phys Sin, 2008, 57(9), 5400-5406.
[19] 马军, 唐军, 张爱华, 等. 二维格子神经元网络中螺旋波的鲁棒性和破裂[J].中国科学, 2009, (12):1754-1761.
Ma Jun, Tang Jun, Zhang Aihua, et al. Robustness and breakup of spiral wave in a two-dimensional lattice networks of neurons[J].Sci China Phys Mech Astron, 2009, (12):1754-1761.
[20] 宋宣玉, 钱郁, 陈光旨,等. 不同缺陷对周期螺旋波的影响[J].广西物理, 2007,(1):7.
Song Xunayu, Qian Yu, Chen Guangzhi, et al. The effect of different defects on the periodic spiral wave[J].Guangxi Physics, 2007,(1):7.
[21] Hendrey M, Ott E, Antonsen T M. Effect of inhomogeneity on spiral wave dynamics[J].Physical Review Letters, 1999, 82(4): 859-862.
[22] Hendrey M, Ott E, Antonsen T M. Spiral wave dynamics in oscillatory inhomogeneous media[J].Physical Review E, 2000, 61(5): 4943.
[23] Xie F, Qu Z, Weiss J N, et al. Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium[J].Physical Review E, 2001, 63(3): 031905.
[24] 田昌海, 邓敏艺, 孔令江, 等. 螺旋波动力学性质的元胞自动机有向小世界网络研究[J].物理学报, 2011, 60(8): 80505-080505.
Tian Changhai, Deng Minzhi, Kong Lingjiang, et al. Cellular automaton simulation with directed small-world networks for the dynamical behaviors of spiral waves[J].Acta Phys Sin, 2011, 60(8):80505-080505.
[25] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因[J].物理学报, 2009, 58(3): 1491-1496.
Dai Yu, Tang Guoning. Some origins of the low excitability of a discrete excitable medium[J].Acta Phys Sin, 2009, 58(3):1491-1496.
[1] 崔孝凯, 王庆芝, 刘其朋. 基于数据驱动的锂电池健康状态预测[J]. 复杂系统与复杂性科学, 2024, 21(3): 154-159.
[2] 邓中乙. 面向磨煤机组故障诊断的聚类粗化图模型[J]. 复杂系统与复杂性科学, 2024, 21(1): 152-158.
[3] 纪鑫, 徐嘉明, 杨瑷玲, 于子兰, 唐铁桥. 突发传染病情况下高校行人流建模分析与管理控制:以高校食堂为例[J]. 复杂系统与复杂性科学, 2024, 21(1): 35-42.
[4] 李若晨, 肖人彬. 基于改进狼群算法优化LSTM网络的舆情演化预测[J]. 复杂系统与复杂性科学, 2024, 21(1): 1-11.
[5] 邱长滨, 王庆芝, 刘其朋. 基于改进NetVLAD图像特征提取的回环检测算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 92-97.
[6] 邓建华, 冯焕焕, 葛婷. 初始化对交通元胞自动机模型稳定性的影响[J]. 复杂系统与复杂性科学, 2023, 20(2): 105-110.
[7] 桂水荣, 蓝天飞, 陈水生, 葛世祺. 考虑车辆异质性的堵塞交通流模型研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 98-104.
[8] 张梦真, 王庆芝, 刘其朋. 基于层次化可导航小世界网络改进的SeqSLAM算法[J]. 复杂系统与复杂性科学, 2023, 20(1): 105-110.
[9] 王佳亮, 李海滨, 李海燕. 基于复杂网络的新冠病毒群体免疫数值仿真[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
[10] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[11] 李炎, 李宪, 杨明业, 孙国庆. 基于概率优化的神经网络模型组合算法[J]. 复杂系统与复杂性科学, 2022, 19(3): 104-110.
[12] 周美琦, 杨晓霞, 张纪会, 刘天宇. 基于改进元胞自动机模型的地铁车厢乘客疏散模拟[J]. 复杂系统与复杂性科学, 2021, 18(3): 35-44.
[13] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
[14] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[15] 刘天宇, 杨晓霞, 张纪会, 赵逸群, 周美琦. 基于高斯混合模型的受引导人群疏散研究[J]. 复杂系统与复杂性科学, 2020, 17(3): 62-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed