Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (4): 18-25    DOI: 10.13306/j.1672-3813.2016.04.003
  本期目录 | 过刊浏览 | 高级检索 |
产生幂律等分布的一种机制
李鹤龄1,2, 王娟娟1, 杨斌1,2, 沈宏君1,2
1.宁夏大学物理电气信息学院,银川 750021;
2.宁夏沙漠信息智能感知重点实验室, 银川 750021
A Mechanism of Generating Power-Law and Other Distributions
LI Heling1,2, WANG Juanjuan1, YANG Bin1,2, SHEN Hongjun1,2
1. School of Physics and Electrical Information Science, Ningxia University, Yinchuan 750021, China;
2. Key Lab on Information Sensing and Intelligent Desert, Yinchuan 750021, China
全文: PDF(782 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对在复杂性系统研究中幂律分布扮演着越来越重要的角色而又不存在公认的合理导出的矛盾,基于复杂性系统的不可解性,在非完整统计的思想基础上,分别在归一化条件、统计平均和Shannon熵的方程中引入不同的指数因子,由最大熵原理推导出了指数函数、幂函数和幂函数与指数函数乘积形式的概率分布函数;展现了由Shannon熵和最大熵原理推导等概率假设的过程;同时也展现了可导出指数分布、幂律分布和幂函数与指数函数乘积形式分布的一种新机制,即最大熵原理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹤龄
王娟娟
杨斌
沈宏君
关键词 复杂系统非完整统计Shannon熵幂律分布    
Abstract:For resolving the contradiction between power-law distribution playing an increasingly important role in investigation of complex systems and it has not been derived out up to now, in this paper the maximal entropy principle and the idea of incomplete statistics were utilized. Firstly, the detail of deriving the equal probability hypothesis from Shannon entropy and maximum entropy principle was showed. Then three different exponential factors were introduced in equations about the normalization condition, statistical average and Shannon entropy respectively. Based on the Shannon entropy and maximum entropy principle, three different probability distribution functions, such as exponential function, power function and the product form consisting of power function and exponential function, were derived out. Which demonstrated the maximum entropy principle was a path which may lead to different distribution functions.
Key wordscomplex systems    incomplete statistics    Shannon entropy    power-law distribution
收稿日期: 2015-01-20      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:国家自然科学基金(61167002);宁夏自然科学基金(NZ14055)
通讯作者: 杨斌(1974-),男,山西运城人,硕士,副教授,主要研究复杂系统和理论物理。   
作者简介: 李鹤龄(1960-),男,河北沧州人,硕士,教授,主要研究方向为复杂系统和反常统计物理。
引用本文:   
李鹤龄, 王娟娟, 杨斌, 沈宏君,. 产生幂律等分布的一种机制[J]. 复杂系统与复杂性科学, 2016, 13(4): 18-25.
LI Heling, WANG Juanjuan, YANG Bin, SHEN Hongjun. A Mechanism of Generating Power-Law and Other Distributions[J]. Complex Systems and Complexity Science, 2016, 13(4): 18-25.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.04.003      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I4/18
[1] 汪志诚.热力学·统计物理[M].第4版.北京:高等教育出版社, 2008.
[2] Jaynes E T. Information theory and statistical mechanics[J].Phys Rev, 1957, 106(4):620.
[3] 胡海波,王林. 幂律分布研究简史[J].物理,2005,34(12):989-996.
Hu haibo,Wang Lin. A brief history of power law distributions[J].Physics,2005,34(12):989-996.
[4] Albert R, Barabási A L. Emergence of scaling in random networks[J].Science,1999,286:509.
[5] Barabási A L, Albert R. Mean-field theory for scale-free random networks[J].Physica A,1999,272:173.
[6] Bak P, Tang C, Wiesenfeld K. Self-organised criticality:an explanation of 1/f noise[J].Phys Rev Lett,1987,59: 381.
[7] 帕巴克.大自然如何工作[M].武汉:华中师范大学出版社, 2001.
[8] Carlson J M, Doyle J. Highly optimized tolerance: a mechanism for power laws in designed systems[J].Phys Rev E,1999,60:1412.
[9] Carlson J M, Doyle J. Highly optimized tolerance: robustness and design in complex systems[J].Phys Rev Lett,2000,84:2529.
[10] Newman M E J. Power laws, Pareto distributions and Zipf's law[J].Contemporary Physics, 2004, 46(5):323-351.
[11] Broadbent S R, Hammersley J M. Percolation processes I crystals and mazes[J].Proc Cambridge Philos Soc, 1957, 53:629.
[12] Hammersley J M. Percolation processes II the connective constant[J].Proc Cambridge Philos Soc,1957, 53:642.
[13] Grimmett G. Percolation[M].2nd ed. Berlin: Springer-Verlag, 1999.
[14] Reed W J, Hughes B D. From gene families and genera to incomes and Internet file sizes: why power laws are so common in nature[J].Phys Rev E, 2002, 66(6):067103.
[15] Mitzenmacher M. A brief history of generative models for power law and lognormal distributions[J].Internet Mathematics, 2004, 1(2):226-251.
[16] Miller G A. Some effects of intermittent silence[J].Amer J Psycho, 1957, 70:311-314.
[17] Fa K S. Continuous-time random walk: crossover from anomalous regime to normal regime[J].Phys Rev E, 2010, 82(1):012101.
[18] Boberski J, Shaebani M R, Wolf D E. Evolution of the force distributions in jammed packings of soft particles[J].Phys Rev E, 2013, 88(6):064201.
[19] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics[J].J Stat Phys, 1988, 52(1):479-487.
[20] Tsallis C, Mendes R S, Plastino A R. The role of constraints within generalized nonextensive statistics[J].Physica A, 1998, 261(3/4):534-554.
[21] Li H L, XiongY, Li Y Y. The Tsallis statistical distribution in a completely open system[J].Physica A, 2011, 390:2769–2775.
[22] 欧聪杰. 非广延统计物理中的四个基本问题与广义量子气体的热力学性质[D].厦门:厦门大学,2006.
Ou Congjie. Four basic problems in nonextensive statistical physics and the ther modynamic properties of generalized quantum gases[D].Xiamen: Xiamen Vniversity,2006.
[23] Wang Q A. Correlated electrons and generalized statistics[J].Euro Phys J B, 2003, 31(1):75-79.
[24] Wang Q A. Extensive generalization of statistical mechanics based on incomplete information theory[J].Entropy, 2000,5(2):220-232.
[25] 谭涛,李鹤龄. 统计力学基本假设的教学更新[J].大学物理,1997,16(1):44-45.
Tan Tao,Li Heling. Teaching renewal of basic hypothesis of statistical mechanics[J].College Physics,1997,16(1):44-45.
[1] 卢周来, 孟斌斌, 吴伟韬, 赵晶, 戚刚, 赵扬帆. 复杂性科学视角下的金融研究新进展[J]. 复杂系统与复杂性科学, 2024, 21(2): 1-14.
[2] 谭桂敏, 汪丽娜, 臧臣瑞. 耦合二分网络识别通信系统流量的时空特征[J]. 复杂系统与复杂性科学, 2022, 19(2): 71-79.
[3] 刘勇. 疾病、经济增长与相对贫困的复杂系统建模研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 58-65.
[4] 王志平, 王佳. 基于超网络的舆论演化动态模型[J]. 复杂系统与复杂性科学, 2021, 18(2): 29-38.
[5] 李培哲. 产学研视角下高技术产业成长系统动力学研究[J]. 复杂系统与复杂性科学, 2020, 17(2): 76-85.
[6] 卢美丽, 高宇佳, 叶作亮. 在线顾客购买阵发性的测量和调节作用[J]. 复杂系统与复杂性科学, 2020, 17(1): 71-80.
[7] 李鹤龄, 王雅婷, 杨斌, 沈宏君. 完全开放系统的幂律分布及其适用对象[J]. 复杂系统与复杂性科学, 2019, 16(3): 71-78.
[8] 钱晓东, 杨贝. 基于复杂网络模型的供应链企业合作演化研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 1-10.
[9] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
[10] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed