Research on Complex Network Model with the Bimodal Effect
LIU Shengjiu1,2, LI Tianrui1,2, ZHU Jie1,2,3, WANG Hongjun1,2
1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China; 2. Key Lab of Cloud Computing and Intelligent Technique, Sichuan Province, Chengdu 611756, China; 3. Department of Computer Science, Tibetan University, Lasa 850000, China
Abstract:The method of growth and preferential attachment applied by the classic BA scale-free network model to deal with connections between nodes of network will result in unlimited connections and other defects. This paper improves the method of connections of BA network model by introducing the maximum number of connections, having a sub-linear growth in the number of connections of new nodes and using Logistic function. Then a new network model named BE with a bimodal degree distribution is obtained. Its several properties are also provided. This model may be applied to explain the socio-economic polarization in the real world well. Moreover, the shifting and zooming of the peak may be achieved by adjusting its parameters. BE network model will be degenerated to BA network model in the limiting case.
刘胜久, 李天瑞, 珠杰, 王红军. 具有双峰效应特性的复杂网络模型研究[J]. 复杂系统与复杂性科学, 2017, 14(1): 46-51.
LIU Shengjiu, LI Tianrui, ZHU Jie, WANG Hongjun. Research on Complex Network Model with the Bimodal Effect[J]. Complex Systems and Complexity Science, 2017, 14(1): 46-51.
[1] Erdos P, Renyi A. On random graphs I[J].Publicationes Mathematicae, 1959, 6: 290-297. [2] Barabasi A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286(5439): 509-512. [3] Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J].Physica A, 2001, 299(3/4): 559-564. [4] Li X, Chen G R. A local-world evolving network model[J].Physica A, 2003, 328(1/2): 274-286. [5] 张先迪, 李正良. 图论及其应用[M].北京: 高等教育出版社, 2005. [6] Newman M E J. The structure and function of complex networks[J].SIAM Review, 2003, 45(2): 167-256. [7] 王杰, 李雪. 基于改进BA模型的海运复杂网络演化研究[J].武汉理工大学学报(交通科学与工程版), 2013, 37(3): 496-500. Wang Jie, Li Xue. Analysis of shipping complex network evolving based on improved BA model[J].Journal of Wuhan University of Technology(Transportation Science & Engineering), 2013, 37(3): 496-500. [8] Galiceanu M, Reis A S, Dolgushev M. Dynamics of semiflexible scale-free polymer networks[J].Journal of Chemical Physics, 2014, 141(14): 144902. [9] 辜芳琴,樊锁海. BA 无标度网络的双向演化模型[J].暨南大学学报(自然科学版), 2013, 34(5): 475-478. Gu Fangqin, Fan Suohai. The two-way evolution model of a BA scale-free network[J].Journal of Jinan University(Natural Science & Medicine Edition), 2013, 34(5): 475-478. [10] 曹玉芬, 侯振挺, 范伟平. 随机 BA模型的度分布[J].数学理论与应用, 2009, 29(2): 24-26. Cao Yufen, Hou Zhenting, Fan Weiping. Degree-distribution of a variant of BA model[J].Mathematical theory and Applications, 2009, 29(2): 24-26. [11] 刘浩然, 尹文晓, 董明如, 等. 一种强容侵能力的无线传感器网络无标度拓扑模型研究[J].物理学报, 2014, 63(9): 090503. Liu Haoran, Yin Wenxiao, Dong Mingru, et al. Study on the scale-free topology model with strong intrusion-tolerance ability in wireless sensor networks[J].Acta Physica Sinica, 2014, 63(9): 090503. [12] Emmerich T, Bunde A, Havlin S. Structural and functional properties of spatially embedded scale-free networks[J].Physical Review E, 2014, 89 (6): 062806. [13] 韩丽, 刘彬, 李雅倩, 等. 能量异构的无线传感器网络加权无标度拓扑研究[J].物理学报, 2014, 63(15): 150504. Han Li, Liu Bin, Li Yaqian, et al. Studies on weighted scale-free topology in energy heterogeneous wireless sensor network[J].Acta Physica Sinica, 2014, 63(15): 150504. [14] Ruiz V E, Mitchell D G V, Greening S G, et al. Topology of whole-brain functional MRI networks: Improving the truncated scale-free model[J].Physica A, 2014, 405: 151-158. [15] 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J].电子科技大学学报, 2014, 43(1): 1-5. Zhou Tao, Zhang Zike, Chen Guanrong, et al. The opportunities and challenges of complex networks research[J].Journal of University of Electronic Science and Technology of China, 2014, 43(1): 1-5. [16] Rangan S, Rappaport T S, Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges[J].Proceedings of the IEEE, 2014, 102(3): 366-385. [17] Liang Xiaohui, Zhang Kuan, Shen Xuemin, et al. Security and privacy in mobile social networks: Challenges and solutions[J].IEEE Wireless Communications, 2014, 21(1): 33-41. [18] Mei Bo, Bi Jinshun, Bu Jianhui, et al. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J].Journal of Semiconductors, 2013, 34(1): 014004. [19] 卫兴华. 我国当前贫富两极分化现象及其根源[J].西北师大学报(社会科学版), 2012, 49(5): 1-9. Wei Xinghua. Understanding the polarization between the rich and the poor in China[J].Journal of Northwest Normal University(Social Sciences), 2012, 49(5): 1-9. [20] Albert R, Jeong H, Barabasi A L. Diameter of the World Wide Web[J].Nature, 1999, 401(6749): 130-131. [21] 郭世泽, 陆哲明. 复杂网络基础理论[M].北京: 科学出版社, 2012. [22] Taira K. Introduction to diffusive logistic equations in population dynamics[J].Journal of Applied Mathematics and Computing, 2002, 9(2): 289-347. [23] Qu J G, Cui Y H, Yang A M, et al. The study for the prediction model of China population growth[J].Journal of Computers, 2011, 6(10): 2076-2083. [24] Wattimena R K, Kramadibrata S, Sidi I D, et al. Developing coal pillar stability chart using logistic regression[J].International Journal of Rock Mechanics and Mining Sciences, 2014, 58(2): 55-60. [25] Idlango M A, Gear J A, Shepherd J J. Survival to extinction in a slowly varying harvested logistic population model[J].Applied Mathematics Letters, 2014, 26(11): 1035-1040. [26] Arnaboldi V, Guazzini A, Passarella A. Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook[J].Computer Communications, 2013, 36(10/11): 1130-1144.