Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 46-51    DOI: 10.13306/j.1672-3813.2017.01.007
  本期目录 | 过刊浏览 | 高级检索 |
具有双峰效应特性的复杂网络模型研究
刘胜久1,2, 李天瑞1,2, 珠杰1,2,3, 王红军1,2
1.西南交通大学信息科学与技术学院, 成都 611756;
2.四川省云计算与智能技术高校重点实验室, 成都 611756;
3.西藏大学计算机科学系, 拉萨 850000
Research on Complex Network Model with the Bimodal Effect
LIU Shengjiu1,2, LI Tianrui1,2, ZHU Jie1,2,3, WANG Hongjun1,2
1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China;
2. Key Lab of Cloud Computing and Intelligent Technique, Sichuan Province, Chengdu 611756, China;
3. Department of Computer Science, Tibetan University, Lasa 850000, China
全文: PDF(870 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决BA网络模型采用增长与择优处理节点之间的连接而导致节点连接数目无限增长等不足,通过对BA网络模型的节点连接策略改进,即通过引入节点最大连接数目,设置新增节点连接数目亚线性增长并采用Logistic函数得到了一种度分布具有双峰效应特性的BE网络模型,并给出了其若干性质。该模型可应用于解释经济、社会等现实生活中的两极分化现象,而且通过调整其参数可实现峰的移动和缩放,在极限情况下BE模型可退化成BA模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘胜久
李天瑞
珠杰
王红军
关键词 复杂网络无标度双峰效应Logistic函数    
Abstract:The method of growth and preferential attachment applied by the classic BA scale-free network model to deal with connections between nodes of network will result in unlimited connections and other defects. This paper improves the method of connections of BA network model by introducing the maximum number of connections, having a sub-linear growth in the number of connections of new nodes and using Logistic function. Then a new network model named BE with a bimodal degree distribution is obtained. Its several properties are also provided. This model may be applied to explain the socio-economic polarization in the real world well. Moreover, the shifting and zooming of the peak may be achieved by adjusting its parameters. BE network model will be degenerated to BA network model in the limiting case.
Key wordscomplex network    scale-free    bimodal effect    logistic function
收稿日期: 2015-10-08      出版日期: 2025-02-24
ZTFLH:  TP393.0  
基金资助:国家自然基金项目(61573292,61262058,61152001);中国科学院自动化研究所复杂系统管理与控制重点实验室开放课题(20110102)
作者简介: 刘胜久(1988-),男,湖北随州人,博士,主要研究方向为复杂网络,自然语言处理等。
引用本文:   
刘胜久, 李天瑞, 珠杰, 王红军. 具有双峰效应特性的复杂网络模型研究[J]. 复杂系统与复杂性科学, 2017, 14(1): 46-51.
LIU Shengjiu, LI Tianrui, ZHU Jie, WANG Hongjun. Research on Complex Network Model with the Bimodal Effect[J]. Complex Systems and Complexity Science, 2017, 14(1): 46-51.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.007      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/46
[1] Erdos P, Renyi A. On random graphs I[J].Publicationes Mathematicae, 1959, 6: 290-297.
[2] Barabasi A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286(5439): 509-512.
[3] Barabasi A L, Ravasz E, Vicsek T. Deterministic scale-free networks[J].Physica A, 2001, 299(3/4): 559-564.
[4] Li X, Chen G R. A local-world evolving network model[J].Physica A, 2003, 328(1/2): 274-286.
[5] 张先迪, 李正良. 图论及其应用[M].北京: 高等教育出版社, 2005.
[6] Newman M E J. The structure and function of complex networks[J].SIAM Review, 2003, 45(2): 167-256.
[7] 王杰, 李雪. 基于改进BA模型的海运复杂网络演化研究[J].武汉理工大学学报(交通科学与工程版), 2013, 37(3): 496-500.
Wang Jie, Li Xue. Analysis of shipping complex network evolving based on improved BA model[J].Journal of Wuhan University of Technology(Transportation Science & Engineering), 2013, 37(3): 496-500.
[8] Galiceanu M, Reis A S, Dolgushev M. Dynamics of semiflexible scale-free polymer networks[J].Journal of Chemical Physics, 2014, 141(14): 144902.
[9] 辜芳琴,樊锁海. BA 无标度网络的双向演化模型[J].暨南大学学报(自然科学版), 2013, 34(5): 475-478.
Gu Fangqin, Fan Suohai. The two-way evolution model of a BA scale-free network[J].Journal of Jinan University(Natural Science & Medicine Edition), 2013, 34(5): 475-478.
[10] 曹玉芬, 侯振挺, 范伟平. 随机 BA模型的度分布[J].数学理论与应用, 2009, 29(2): 24-26.
Cao Yufen, Hou Zhenting, Fan Weiping. Degree-distribution of a variant of BA model[J].Mathematical theory and Applications, 2009, 29(2): 24-26.
[11] 刘浩然, 尹文晓, 董明如, 等. 一种强容侵能力的无线传感器网络无标度拓扑模型研究[J].物理学报, 2014, 63(9): 090503.
Liu Haoran, Yin Wenxiao, Dong Mingru, et al. Study on the scale-free topology model with strong intrusion-tolerance ability in wireless sensor networks[J].Acta Physica Sinica, 2014, 63(9): 090503.
[12] Emmerich T, Bunde A, Havlin S. Structural and functional properties of spatially embedded scale-free networks[J].Physical Review E, 2014, 89 (6): 062806.
[13] 韩丽, 刘彬, 李雅倩, 等. 能量异构的无线传感器网络加权无标度拓扑研究[J].物理学报, 2014, 63(15): 150504.
Han Li, Liu Bin, Li Yaqian, et al. Studies on weighted scale-free topology in energy heterogeneous wireless sensor network[J].Acta Physica Sinica, 2014, 63(15): 150504.
[14] Ruiz V E, Mitchell D G V, Greening S G, et al. Topology of whole-brain functional MRI networks: Improving the truncated scale-free model[J].Physica A, 2014, 405: 151-158.
[15] 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J].电子科技大学学报, 2014, 43(1): 1-5.
Zhou Tao, Zhang Zike, Chen Guanrong, et al. The opportunities and challenges of complex networks research[J].Journal of University of Electronic Science and Technology of China, 2014, 43(1): 1-5.
[16] Rangan S, Rappaport T S, Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges[J].Proceedings of the IEEE, 2014, 102(3): 366-385.
[17] Liang Xiaohui, Zhang Kuan, Shen Xuemin, et al. Security and privacy in mobile social networks: Challenges and solutions[J].IEEE Wireless Communications, 2014, 21(1): 33-41.
[18] Mei Bo, Bi Jinshun, Bu Jianhui, et al. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J].Journal of Semiconductors, 2013, 34(1): 014004.
[19] 卫兴华. 我国当前贫富两极分化现象及其根源[J].西北师大学报(社会科学版), 2012, 49(5): 1-9.
Wei Xinghua. Understanding the polarization between the rich and the poor in China[J].Journal of Northwest Normal University(Social Sciences), 2012, 49(5): 1-9.
[20] Albert R, Jeong H, Barabasi A L. Diameter of the World Wide Web[J].Nature, 1999, 401(6749): 130-131.
[21] 郭世泽, 陆哲明. 复杂网络基础理论[M].北京: 科学出版社, 2012.
[22] Taira K. Introduction to diffusive logistic equations in population dynamics[J].Journal of Applied Mathematics and Computing, 2002, 9(2): 289-347.
[23] Qu J G, Cui Y H, Yang A M, et al. The study for the prediction model of China population growth[J].Journal of Computers, 2011, 6(10): 2076-2083.
[24] Wattimena R K, Kramadibrata S, Sidi I D, et al. Developing coal pillar stability chart using logistic regression[J].International Journal of Rock Mechanics and Mining Sciences, 2014, 58(2): 55-60.
[25] Idlango M A, Gear J A, Shepherd J J. Survival to extinction in a slowly varying harvested logistic population model[J].Applied Mathematics Letters, 2014, 26(11): 1035-1040.
[26] Arnaboldi V, Guazzini A, Passarella A. Egocentric online social networks: Analysis of key features and prediction of tie strength in Facebook[J].Computer Communications, 2013, 36(10/11): 1130-1144.
[1] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[2] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 周斌, 马福祥, 高淑洁, 马秀娟, 李明杰. 超边内部结构对无标度超网络鲁棒性的影响[J]. 复杂系统与复杂性科学, 2024, 21(3): 1-8.
[5] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[8] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[9] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[10] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[11] 谢逢洁, 姚欣, 王思一. 高阶结构对无标度网络上合作行为演化的影响[J]. 复杂系统与复杂性科学, 2024, 21(1): 12-19.
[12] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[13] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[14] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[15] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed