Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (3): 86-93    DOI: 10.13306/j.1672-3813.2020.03.009
  本期目录 | 过刊浏览 | 高级检索 |
动态空间约束网络模型及其双段幂律特征
徐静, 钱江海
上海电力大学数理学院,上海 200090
A Spatial Network Model with Dynamic Constraints and Its Double Power Law Feature
XU Jing, QIAN Jianghai
College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China
全文: PDF(1522 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了寻找双段幂律分布可能的产生机制,提出了一种基于约束面积双值跳变的动态空间约束网络模型。理论解析和模拟仿真结果表明该模型的度分布会在演化初期呈现单段幂律,而后演化为稳定的双段幂律。为验证模型在现实中的有效性,对中国航空网络做了实证分析。实证结果不仅给出了如理论模型所预言的度分布演化模式,还直接观测到了模型所要求的匹配其度分布的约束面积的变化趋势。理论模型可为双段幂律度分布提供一种可能的解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐静
钱江海
关键词 空间网络模型约束面积双值跳变航空网络双段幂律    
Abstract:In order to find the possible generation mechanism of double power law distribution, a spatial network model with dynamic constraints was proposed in this paper based on double-value confined areas. The results of theoretical analysis and simulation showed that the degree distribution of the model presented a single power law in the early stage of evolution, and then evolved into a stable double power law. Furthermore, we made an empirical analysis on Chinese aviation network to verify the validity of the model in reality. The empirical results not only gave the evolution patterns of degree distribution as predicted by theoretical model, but also enabled us to directly observe the evolution trend of the confined area required by model to match its degree distribution. Our theoretical model could provide a possible explanation for the emergence of double power law degree distribution.
Key wordsspatial network model    double-value confined areas    aviation network    double power law
收稿日期: 2020-02-11      出版日期: 2020-09-23
ZTFLH:  TP393  
  N94  
通讯作者: 钱江海(1983-),男,上海人,博士,副教授,主要研究方向为复杂网络模型、渗流理论、复杂系统的涨落动力学、社会经济系统与统计物理的交叉学科研究。   
作者简介: 徐静(1994-),女,江苏连云港人,硕士研究生,主要研究方向为空间网络模型的演化及其涨落动力学。
引用本文:   
徐静, 钱江海. 动态空间约束网络模型及其双段幂律特征[J]. 复杂系统与复杂性科学, 2020, 17(3): 86-93.
XU Jing, QIAN Jianghai. A Spatial Network Model with Dynamic Constraints and Its Double Power Law Feature. Complex Systems and Complexity Science, 2020, 17(3): 86-93.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.03.009      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I3/86
[1] Lin J Y, Ban Y F. The evolving network structure of US airline system during 1990-2010[J]. Physica A, 2014, 410: 302-312.
[2] Li W, Cai X. Statistical analysis of airport network of China[J]. Physical Review E, 2003, 69(4): 046106.
[3] Liu H K, Zhou T. Empirical study of Chinese city airline network[J]. Acta Physica Sinica, 2007, 56(1): 106-112.
[4] 钱江海. 空间加权网络模型及权度相关性研究[D]. 上海:华东师范大学,2009.
Qian Jianghai. The study of spatial weighted network model and strength-degree correlation[D]. Shanghai: East China Normal University, 2009.
[5] Barthélemy M, Flammini A. Modeling urban street patterns[J]. Physical Review Letters, 2008, 100(13): 138702.
[6] Masucci A P, Smith D, Crooks A, et al. Random planar graphs and the London street network[J]. Eur Phys J B, 2009, 71(2): 259-271.
[7] Crucitti P, Latora V, Porta S. Centrality measures in spatial networks of urban streets[J]. Physical Review E, 2006, 73(3): 036125.
[8] Yook S H, Jeong H, Barabási A L. Modeling the Internet's large-scale topology[J]. Proc Natl Acad Sci USA, 2002, 99(21): 13382-13386.
[9] Ravasz E, Barabási A L. Hierarchical organization in complex networks[J]. Physical Review E, 2003, 67(2): 026112.
[10] Albert R, Albert I, Nakarado G L. Structural vulnerability of the North American power grid[J]. Physical Review E, 2004, 69(2): 025103.
[11] Solé R V, Rosas-Casals M, Corominas-Murtra B, et al. Robustness of the European power grids under intentional attack[J]. Physical Review E, 2008, 77(2): 026102.
[12] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the North American power grid[J]. Eur Phys J B, 2005, 46(1): 101-107.
[13] Lambiotte R, Blondel V D, Kerchove C, et al. Geographical dispersal of mobile communication networks[J]. Physica A, 2008, 387(21): 5317-5325.
[14] Liben-Nowell D, Nowak J, Kumar R, et al. Geographic routing in social networks[J]. Proc Natl Acad Sci USA, 2005, 102(33): 11623-11628.
[15] Okumura Y. Spatial competition and collaboration networks[J]. International Journal of Game Theory, 2012, 41(3): 455-472.
[16] Chandra A K, Hajra K B, Das P K, et al. Modeling temporal and spatial features of collaboration networks[J]. Int J of Mod Phys C, 2007, 18(7): 1157-1172.
[17] Onel S, Zeid A, Kamarthi S. The structure and analysis of nanotechnology co-author and citation networks[J]. Scientometrics, 2011, 89(1): 119-138.
[18] Adamic L A, Huberman B A, Barabási A L, et al. Power-Law distribution of the World Wide Web[J]. Science, 2000, 287(5461): 2115.
[19] Progulova T, Gadjiev B. Comparative analysis of collaboration networks[C] // Mohammad-Djafari A. AIP Conference Proceedings of the 30nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. New York: American Institute of Physics, 2011: 415-422.
[20] Montoya J M, Solé R V. Small world patterns in food webs[J]. Journal of Theoretical Biology, 2002, 214(3): 405-412.
[21] Motter A E, De Moura A P S, Lai Y C, et al. Topology of the conceptual network of language[J]. Physical Review E, 2002, 65(6): 065102.
[22] Scellato S, Cardillo A, Latora V, et al. The backbone of a city[J]. Eur Phys J B, 2006, 50(1/2): 221-225.
[23] Dall J, Christensen M. Random geometric graphs[J]. Physical Review E, 2002, 66(1): 016121.
[24] Liu F, Zhao Q. An efficient organization mechanism for spatial networks[J]. Physica A, 2006, 366: 608-618.
[25] Guan Z H, Ding L, Kong Z M. Multi-radius geographical spatial networks: Statistical characteristics and application to wireless sensor networks[J]. Physica A, 2010, 389(1): 198-204.
[26] Waxman B M. Routing of multipoint connections[J]. IEEE J Select Areas Commun, 1988, 1(3): 286-292.
[27] Sen P, Banerjee K, Biswas T. Phase transitions in a network with a range-dependent connection probability[J]. Physical Review E, 2002, 66(3): 037102.
[28] Kosmidis K, Havlin S, Bunde A. Structural properties of spatially embedded networks[J]. Europhysics Letters, 2008, 82(4): 48005.
[29] Barthélemy M. Crossover from scale-free to spatial networks[J]. Europhysics Letters, 2003, 63(6): 915-921.
[30] Manna S S, Sen P. Modulated scale-free network in Euclidean space[J]. Physical Review E, 2002, 66(6): 066114.
[31] Xie Y B, Zhou T, Bai W J, et al. Geographical networks evolving with optimal policy[J]. Physical Review E, 2007, 75(3): 036106.
[32] Bounova G A. Topological evolution of networks: case studies in the US airlines and language Wikipedias[D]. Cambridge: Massachusetts Institute Of Technology, 2009.
[33] Chi L P, Cai X. Structural changes caused by error and attack tolerance in US airport network[J]. Int J of Mod Phys B, 2008, 18(17-19): 2394-2400.
[34] Zhang J, Cao X B, Du W B, et al. Evolution of Chinese airport network[J]. Physica A, 2010, 389(18): 3922-3931.
[35] Dorogovtsev S N, Mendes J F F. Language as an evolving word web[J]. Proc R Soc London B, 2001, 268(1485): 2603-2606.
[36] Pinto C M A, Lopes A M, Machado J A T. Double power laws, fractals and self-similarity[J]. Applied Mathematical Modelling, 2014, 38(15/16): 4019-4026.
[37] Toda, Akira A. Income dynamics with a stationary double Pareto distribution[J]. Physical Review E, 2011, 83(4): 046122.
[38] Yuan W G, Liu Y. A mixing evolution model for bidirectional microblog user networks[J]. Physica A, 2015, 432: 167-179.
[39] Reed W J. The Pareto law of incomes—an explanation and an extension[J]. Physica A, 2003, 319: 469-486.
[40] Mitzenmacher M. A brief history of generative models for power law and lognormal distributions[J]. Internet Mathematics, 2004, 1(2): 226-251.
[41] Han D D, Qian J H, Ma Y G. Emergence of double scaling law in complex systems[J]. Europhysics Letters, 2011, 94(2): 28006.
[42] Mitzenmacher M. Dynamic models for file sizes and double pareto distributions[J]. Internet Mathematics, 2004, 1(3): 305-333.
[43] Barthélemy M. Spatial networks[J]. Physics Reports, 2013, 499(1-3): 1-101.
[44] Karpiarz M, Fronczak P, Fronczak A. International trade network: fractal properties and globalization puzzle[J]. Physical Review Letters, 2014, 113(24): 248701.
[45] Disdier A C, Head K. The puzzling persistence of the distance effect on bilateral trade[J]. Review of Economics and Statistics, 2008, 90(1): 37-48.
[46] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1998, 286(5439): 509-511.
[47] Barabási G, Bianconi A L. Competition and multiscaling in evolving networks[J]. Europhysics Letters, 2000, 54(1): 37-43.
[48] Paleari S, Redondi R, Malighetti P. A comparative study of airport connectivity in China, Europe and US: which network provides the best service to passengers?[J]. Transportation Research, 2010, 46(2): 198-210.
[49] Kleinberg J. Navigation in a small world[J]. Nature, 2000, 406: 845.
[50] Li G, Reis S D S, Moreira A A, et al. Towards design principles for optimal transport networks[J]. Physical Review Letters, 2010, 104(1): 018701.
[51] Chen Q, Qian J H, Zhu L, et al. Optimal transport in time-varying small-world networks[J]. Physical Review E, 2016, 93(3): 032321.
[52] Gastner M T, Newman M E J. The spatial structure of networks[J]. European Physical Journal B, 2006, 49(2): 247-252.
[1] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[2] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[3] 吕亚楠, 韩华, 贾承丰, 瞿倩倩. 基于有偏向的重启随机游走链路预测算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 17-24.
[4] 景兴利, 赵彩红, 凌翔. 加权网络上随机行走的平均首到达时间与平均吸收时间[J]. 复杂系统与复杂性科学, 2018, 15(4): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed