Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 109-118    DOI: 10.13306/j.1672-3813.2024.01.014
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于分工和模糊控制的粒子群算法
李金1, 张纪会1, 高学柳2, 张保华2
1.青岛大学 a.复杂性科学研究所;b.山东省工业控制技术重点实验室,山东 青岛 266071;
2.青岛港国际股份有限公司,山东 青岛 266011
Particle Swarm Optimization Algorithm Based on Labor Division and Fuzzy Control
LI Jin1, ZHANG Jihui1, GAO Xueliu2, ZHANG Baohua2
1. a. Institute of Complexity Science; b. Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071, China;
2. Qingdao Port International Company, Ltd, Qingdao 266011, China
全文: PDF(3774 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决粒子群算法在求解复杂优化问题时容易陷入局部最优、寻优精度低、后期收敛慢等问题,提出一种基于分工和模糊控制的粒子群算法,使用分工、参数自适应调整和融合距离因素的模拟退火三种策略对粒子群算法进行改进。将粒子分为侦察粒子和后卫粒子,侦察粒子负责进行探索,后卫粒子向个体最优解和全局最优解学习,保证种群多样性并加快搜索速度;使用Sigmoid函数调节惯性权重,模糊逻辑控制学习因子,以平衡算法的探索和开发能力;以模拟退火机制更新全局最优粒子,同时兼顾距离因素,增强算法跳出局部最优解的能力。采用25个标准测试函数进行仿真实验,仿真结果表明,改进算法在收敛精度、速度和稳定性上都有更好表现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金
张纪会
高学柳
张保华
关键词 群体智能粒子群算法个体最优更新率分工策略模糊逻辑模拟退火    
Abstract:In order to overcome the shortages of the particle swarm optimization algorithm, such as low accuracy, slow convergence and falling into local optima, a particle swarm optimization algorithm based on labor division and fuzzy control is proposed, which improves the algorithm by using the division of labor, parameter adaptive adjustment and simulated annealing with distance factors. Particles are divided into scout and rearguard ones, the former searches randomly and the latter learns from the best individual solutions as well as the best global solution to ensure the diversity of population and to accelerate the search. A sigmoid function is used to adjust the inertial weight and fuzzy logic is applied to balance exploration and exploitation capability of the algorithm. The best global particle is updated according to simulated annealing with distance factors taken into account, which improves the ability of the algorithms to jump out of the local optima. Simulation experiments on 25 standard test functions show that the improved algorithm has better performance in terms of convergence accuracy, speed and stability.
Key wordsswarm intelligence    particle swarm optimization    individual optimal update rate    division of labor    fuzzy logic    simulated annealing
收稿日期: 2022-10-16      出版日期: 2024-04-26
ZTFLH:  TP301  
基金资助:国家自然科学基金(61673228,62072260);青岛市科技计划(21-1-2-16-zhz)
通讯作者: 张纪会(1969-),男,山东青岛人,博士,教授,主要研究方向为复杂系统建模、智能优化理论与方法。   
作者简介: 李金(1996-),男,山东泰安人,硕士研究生,主要研究方向为智能优化方法。
引用本文:   
李金, 张纪会, 高学柳, 张保华. 基于分工和模糊控制的粒子群算法[J]. 复杂系统与复杂性科学, 2024, 21(1): 109-118.
LI Jin, ZHANG Jihui, GAO Xueliu, ZHANG Baohua. Particle Swarm Optimization Algorithm Based on Labor Division and Fuzzy Control[J]. Complex Systems and Complexity Science, 2024, 21(1): 109-118.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.014      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/109
[1] KENNEDY J, EBERHART R. Particle swarm optimization[C]//International Conference on Neural Networks. Piscataway: IEEE, 1995,4: 1942-1948.
[2] WANG D S, TAN D P, LIU L. Particle swarm optimization algorithm: an overview[J]. Soft Computing, 2018, 22(2): 387-408.
[3] WANG F, ZHANG H, ZHOU A. A particle swarm optimization algorithm for mixed-variable optimization problems[J]. Swarm and Evolutionary Computation, 2021, 60(2): 100808.
[4] CHEN K, XUE B, ZHANG M ,et al. Correlation-guided updating strategy for feature selection in classification with surrogate-assisted particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,2022,26(5):1015-1029.
[5] JUNIOR F, YEN G. Particle swarm optimization of deep neural networks architectures for image classification[J]. Swarm and Evolutionary Computation, 2019, 49: 62-74.
[6] LIU Y, LIU J, JIN Y. Surrogate-assisted multipopulation particle swarm optimizer for high-dimensional expensive optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7): 4671-4684.
[7] 卿东升,邓巧玲,李建军,等.基于粒子群算法的满载需求可拆分车辆路径规划[J].控制与决策, 2021, 36(6): 1397-1406.
QING D S, DENG Q L, LI J J ,et al. Split vehicle route planning with full load demand based on particle swarm optimization[J]. Control and Decision, 2021, 36(6): 1397-1406.
[8] 帅茂杭,熊国江,胡晓,等.基于改进多目标骨干粒子群算法的电力系统环境经济调度[J].控制与决策, 2022, 37(4): 997-1004.
SHUAI M H, XIONG G J, HU X ,et al. Economic emission dispatch of power system based on improved bare-bone multi-objective particle swarm optimization algorithm[J]. Control and Decision, 2022, 37(4): 997-1004.
[9] SHI Y, Eberhart R. A modified particle swarm optimizer[C]//IEEE International Conference on Evolutionary Computation. Anchorage,AK,USA:IEEE, 1998: 69-73.
[10] 路复宇,童宁宁,冯为可,等.自适应杂交退火粒子群优化算法[J].系统工程与电子技术,2022,44(11):3470-3476.
LU F Y, TONG N N, FENG W K ,et al. Adaptive hybrid annealing particle swarm optimization algorith-m[J]. Systems Engineering and Electronics,2022,44(11):3470-3476.
[11] LIU W, WANG Z, YUAN Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1085-1093.
[12] NESHAT M. FAIPSO: fuzzy adaptive informed particle swarm optimization[J]. Neural Computing & Applications, 2013, 23(1): S95-S116.
[13] MENG Z Y, ZHONG Y X, MAO G J ,et al. Pso-sono:a novel pso variant for single-objective numerical optimization[J]. Information Sciences, 2022, 586: 176-191.
[14] 邓先礼,魏波,曾辉,等.基于多种群的自适应迁移PSO算法[J].电子学报, 2018, 46(8): 1858-1865.
DENG X L, WEI B, ZENG H ,et al. A multi-population based self-adaptive migration PSO[J]. ACTA ELECTRONICA SINICA, 2018, 46(8): 1858-1865.
[15] 许胜才,蔡军,程昀,等. 基于拓扑结构与粒子变异改进的粒子群优化算法[J].控制与决策, 2019, 34(2): 419-428.
XU S C, CAI J, CHENG Y ,et al. Modified particle swarm optimization algorithms based on topology and particle mutation[J]. Control and Decision, 2019, 34(2): 419-428.
[16] LI H, LI J, WU P S, et al. A ranking-system-based switching particle swarm optimizer with dynamic learning strategies[J]. Neurocomputing, 2022, 494: 356-367.
[17] DZIWINSKI P, BARTCZUK L. A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(6): 1140-1154.
[18] 闫群民,马瑞卿,马永翔,等.一种自适应模拟退火粒子群优化算法[J].西安电子科技大学学报, 2021, 48(4): 120-127.
YAN Q M, MA R Q, MA Y X ,et al. Adaptive simulated annealing particle swarm optimization algorithm.[J] Joural of Xidian University, 2021, 48(4): 120-127.
[19] 黄晨晨,魏霞,黄德启,等.求解高维复杂函数的混合蛙跳–灰狼优化算法[J]. 控制理论与应用, 2020,37(7): 1655-1666.
HUANG C C, WEI X, HUANG D Q ,et al. Shuffled frog leaping grey wolf algorithm for solving high dimensional complex functions[J]. Control Theory & Applications, 2020, 37(7): 1655-1666.
[20] MIRJALILI S, GANDOMI A H, Mirjalili S Z ,et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[21] 王英聪,刘军辉,肖人彬.基于刺激-响应分工机制的人工蜂群算法[J].控制与决策, 2022, 37(4): 881-891.
WANG Y C, LIU J H, XIAO R B ,et al. Artifificial bee colony algorithm based on stimulus-response labor division[J]. Control and Decision, 2022, 37(4): 881-891.
[1] 郭振起, 朱媛媛, 钟永光. 考虑复杂交通的废弃电器电子产品回收网络模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 81-89.
[2] 李军涛, 胡启贤, 刘朋飞, 郭文文. 跨层穿梭车双提升机系统多目标问题优化[J]. 复杂系统与复杂性科学, 2022, 19(4): 80-90.
[3] 周美琦, 杨晓霞, 张纪会, 刘天宇. 基于改进元胞自动机模型的地铁车厢乘客疏散模拟[J]. 复杂系统与复杂性科学, 2021, 18(3): 35-44.
[4] 王姗姗, 张纪会. 穿梭车仓储系统复合作业路径优化[J]. 复杂系统与复杂性科学, 2021, 18(1): 63-72.
[5] 刘天宇, 杨晓霞, 张纪会, 赵逸群, 周美琦. 基于高斯混合模型的受引导人群疏散研究[J]. 复杂系统与复杂性科学, 2020, 17(3): 62-69.
[6] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[7] 李阳, 田兴华, 张纪会. 基于改进BA网络的遗传算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 69-76.
[8] 庞锐, 高兴宝. 基于分解的改进自适应多目标粒子群优化算法[J]. 复杂系统与复杂性科学, 2018, 15(2): 77-87.
[9] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed