摘要为提高网络鲁棒性优化策略的效率,分析了几类主要的优化策略对城市基础设施网络结构的影响,提出一种基于社团外围节点加边策略(Community Periphery nodes link Addition,CPA)来优化网络鲁棒性。所提策略采用GN算法确定复杂网络社团结构,将社团看作一个网络,采用K壳算法确定每个社团内网络中心的位置,找出每个社团内受网络中心影响最小的节点作为社团外围节点,根据外围节点建立连边。基于真实的基础设施网络以及BA无标度网络模型的实验结果表明,通过与经典的随机加边,低度加边,低介数加边以及代数连通性加边策略相比,CPA策略在多数情况下对网络的鲁棒性提升效率更高。
Abstract:To improve the efficiency of the network robustness optimization strategy, the impacts of several major types of optimization strategies on the structure of urban infrastructure networks were analyzed. A strategy called Community Periphery nodes link Addition (CPA) was proposed to optimize network robustness. This strategy uses the Girvan-Newman algorithm to determine the community structure of complex networks, regards each community as a network, uses the K-shell algorithm to determine the position of the network center within each community, identifies the node within each community which is least affected by the network center as the community periphery node, and establishes edges based on these periphery nodes. The experimental results based on the real infrastructure network and BA scale-free network model demonstrate that compared with classical strategies,such as random edge addition strategy, low-degree addition strategy, low-betweenness addition strategy, and algebraic connectivity addition strategy, the CPA strategy generally achieves higher efficiency in improving network robustness.
潘文祥, 李东艳, 孙思翔, 佟宁. 一种基于社团外围节点的网络鲁棒性优化策略[J]. 复杂系统与复杂性科学, 2026, 23(1): 70-78.
PAN Wenxiang, LI Dongyan, SUN Sixiang, TONG Ning. Robustness Optimization Strategy for Networks Based on Peripheral Nodes of Communities[J]. Complex Systems and Complexity Science, 2026, 23(1): 70-78.
[1] 张博骞,王威,马东辉.面向控制性详细规划的城市综合防灾多道防线建设探讨[J].上海城市规划, 2023(3): 151-157. ZHANG B Q,WANG W,MA D H.Discussion on the construction of multi-line of defense for urban comprehensive disaster prevention for regulatory detailed planning[J]. Shanghai Urban Planning Review, 2023(3): 151-157. [2] SACHTJEN M L, CARRERAS B A. LYNCH V E.Disturbances in a power transmission system[J]. Phys Rev E, 2000, 61(5): 4877-4882. [3] DAI Y Y,CHEN G, DONG Z Y, et al.An improved framework for power grid vulnerability analysis considering critical system features[J]. Physica A: Statistical Mechanics and Its Applications, 2014(395): 405-415. [4] MA T L, YAO J X, QI C, et al.Non-monotonic increase of robustness with capacity tolerance in power grids[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(21): 5516-5524. [5] WANG K, ZHANG B H, ZHANG Z, et al. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23/24): 4692-4701. [6] WU J,TSE C K, LAU F. Analysis of communication network performance from a complex network perspective[J]. IEEE Trans Circ Syst I: Reg Papers, 2013,60(12):3303-3316. [7] CÁRDENAS J P, MOURONTE M L, MOYANO L G, et al.On the robustness of Spanish telecommunication networks[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(19): 4209-4216. [8] PU C L, YANG J, PEI W J, et al.Robustness analysis of static routing on networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(15): 3293-3300. [9] 郭明健,高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学,2022,19(4):1-6. GUO M J,GAO Y. Invulnerability analysis of power network based on complex network[J]. Complex Systems and Complex Science, 2022,19(4):1-6. [10] LACASA L C, CEA M, ZANIN M. Jamming transition in air transportation networks[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(18): 3948-3954. [11] KOTEGAWA T,FRY D,DELAURENTIS D,et al. Impact of service network topology on air transportation efficiency[J]. Transportation Research Part C, 2014, 40: 231-250. [12] SHUANG Q,ZHANG M Y,YUAN Y B.Node vulnerability of water distribution networks under cascading failures[J]. Reliability Engineering and System Safety, 2014(124): 132-141. [13] LEI W,MA S,MA J.Robustness improvements of scale-free networks against cascading breakdown[J]. Europhysics Letters, 2022, 138(3): 031002. [14] LI S,LU D,WU X, et al. Enhancing the power grid robustness against cascading failures under node-based attacks[J]. Modern Physics Letters B, 2021, 35(9): 2150152. [15] SHAO J, BULDYREV S V, HAVLIN S,et al. Cascade of failures in coupled network systems with multiple support-dependence relations[J]. Physical Review E, 2011, 83(3): 036116. [16] SCHNEIDER C M, YAZDANI N,ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific reports, 2013, 3(1): 1-7. [17] GUANG Z H,CHEN L,QIAN T H,Routing in scale-free networks based on expanding betweenness centrality[J]. Physica A: Statistical Mechanics and Its Applications,2011,390(6): 1131-1138. [18] SYDNEY A, SCOGLIO C, GRUENBACHER D. Optimizing algebraic connectivity by edge rewiring[J]. Applied Mathematics and Computation, 2013, 219(10): 5465-5479. [19] HUANG S, LU Z, DEB K, et al. Revisiting Residual Networks for Adversarial Robustness:An Architectural Perspective[DB/OL].[2023-9-15]. https://www.semanticscholar.org/reader/02f1243778bced398c4949cf90629742175ad79b. [20] YANG Y,LI Z,CHEN Y, et al. Improving the robustness of complex networks with preserving community structure.[J]. PloS One, 2015, 10 (2): e0116551. [21] JALILI M, YU X. Enhancement of Synchronizability in Networks with Community Structure through Adding Efficient Inter-Community Links[J]. IEEE Transactions on Network Science & Engineering, 2017, 3(2): 106-116. [22] ZHONG J Y,LIANG M G,GUO D C.Enhancing network performance by edge addition[J]. International Journal of Modern Physics C, 2011, 22(11): 1211-1226. [23] MARSDEN P V. Network Centrality, Measures of[J]. International Encyclopedia of the Social & Behavioral Sciences, 2015, 2(11):532-539. [24] 吴俊,邓烨,王志刚,等. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022,19(3): 1-13. WU J,DENG Y,WANG Z G, et al. Status and prospects on disintegration of complex networks[J]. Complex Systems and Complex Science, 2022,19(3): 1-13. [25] 崔强,谭敏生,王静.复杂网络攻击与修复策略[J]. 网络安全技术与应用, 2010(1):35-37. CUI Q,TAN M S,WANG J. Complex network attack and repair strategies[J]. Network Security Technology & Application, 2010(1): 35-37. [26] 胡文波.流形上的子空间聚类算法及应用[D]. 无锡:江南大学,2021. HU W B. Subspace clustering algorithm and its application on manifolds [D]. Wuxi:Jiangnan University, 2021. [27] GAN Z,LIANG J.Understanding human mobility within metro networks-flow distribution and community detection[J].Promet-TrafficTransportation,2021,33(3):413-423. [28] GUERREROM,MONTOYA G F,BAOS R, et al.Community detection in national-scale high voltage transmission networks using genetic algorithms[J].Advanced Engineering Informatics,2018(38).232-241. [29] BARABASI A L,Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439):509-512.