Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 70-78    DOI: 10.13306/j.1672-3813.2026.01.009
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
一种基于社团外围节点的网络鲁棒性优化策略
潘文祥, 李东艳, 孙思翔, 佟宁
大连交通大学软件学院,辽宁 大连 116028
Robustness Optimization Strategy for Networks Based on Peripheral Nodes of Communities
PAN Wenxiang, LI Dongyan, SUN Sixiang, TONG Ning
College Of Software,Dalian Jiaotong University, Dalian 116028, China
全文: PDF(3238 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高网络鲁棒性优化策略的效率,分析了几类主要的优化策略对城市基础设施网络结构的影响,提出一种基于社团外围节点加边策略(Community Periphery nodes link Addition,CPA)来优化网络鲁棒性。所提策略采用GN算法确定复杂网络社团结构,将社团看作一个网络,采用K壳算法确定每个社团内网络中心的位置,找出每个社团内受网络中心影响最小的节点作为社团外围节点,根据外围节点建立连边。基于真实的基础设施网络以及BA无标度网络模型的实验结果表明,通过与经典的随机加边,低度加边,低介数加边以及代数连通性加边策略相比,CPA策略在多数情况下对网络的鲁棒性提升效率更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘文祥
李东艳
孙思翔
佟宁
关键词 基础设施网络加边策略社团结构鲁棒性提升    
Abstract:To improve the efficiency of the network robustness optimization strategy, the impacts of several major types of optimization strategies on the structure of urban infrastructure networks were analyzed. A strategy called Community Periphery nodes link Addition (CPA) was proposed to optimize network robustness. This strategy uses the Girvan-Newman algorithm to determine the community structure of complex networks, regards each community as a network, uses the K-shell algorithm to determine the position of the network center within each community, identifies the node within each community which is least affected by the network center as the community periphery node, and establishes edges based on these periphery nodes. The experimental results based on the real infrastructure network and BA scale-free network model demonstrate that compared with classical strategies,such as random edge addition strategy, low-degree addition strategy, low-betweenness addition strategy, and algebraic connectivity addition strategy, the CPA strategy generally achieves higher efficiency in improving network robustness.
Key wordsinfrastructure network    link addition strategy    community structure    robustness optimization
收稿日期: 2024-03-27      出版日期: 2026-02-13
ZTFLH:  TP391  
  N94  
基金资助:辽宁省教育厅科学研究项目(JDL2017018);辽宁省教育厅基本科研项目(JYTMS20230011)
通讯作者: 李东艳(1978-),女,山西安泽人,博士,副教授,主要研究方向为复杂网络、分形与网络脆弱性。   
作者简介: 潘文祥(1998-),男,安徽无为人,硕士,主要研究方向为复杂网络的鲁棒性提升;网络的社团结构发现。
引用本文:   
潘文祥, 李东艳, 孙思翔, 佟宁. 一种基于社团外围节点的网络鲁棒性优化策略[J]. 复杂系统与复杂性科学, 2026, 23(1): 70-78.
PAN Wenxiang, LI Dongyan, SUN Sixiang, TONG Ning. Robustness Optimization Strategy for Networks Based on Peripheral Nodes of Communities[J]. Complex Systems and Complexity Science, 2026, 23(1): 70-78.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.009      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/70
[1] 张博骞,王威,马东辉.面向控制性详细规划的城市综合防灾多道防线建设探讨[J].上海城市规划, 2023(3): 151-157.
ZHANG B Q,WANG W,MA D H.Discussion on the construction of multi-line of defense for urban comprehensive disaster prevention for regulatory detailed planning[J]. Shanghai Urban Planning Review, 2023(3): 151-157.
[2] SACHTJEN M L, CARRERAS B A. LYNCH V E.Disturbances in a power transmission system[J]. Phys Rev E, 2000, 61(5): 4877-4882.
[3] DAI Y Y,CHEN G, DONG Z Y, et al.An improved framework for power grid vulnerability analysis considering critical system features[J]. Physica A: Statistical Mechanics and Its Applications, 2014(395): 405-415.
[4] MA T L, YAO J X, QI C, et al.Non-monotonic increase of robustness with capacity tolerance in power grids[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(21): 5516-5524.
[5] WANG K, ZHANG B H, ZHANG Z, et al. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(23/24): 4692-4701.
[6] WU J,TSE C K, LAU F. Analysis of communication network performance from a complex network perspective[J]. IEEE Trans Circ Syst I: Reg Papers, 2013,60(12):3303-3316.
[7] CÁRDENAS J P, MOURONTE M L, MOYANO L G, et al.On the robustness of Spanish telecommunication networks[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(19): 4209-4216.
[8] PU C L, YANG J, PEI W J, et al.Robustness analysis of static routing on networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(15): 3293-3300.
[9] 郭明健,高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学,2022,19(4):1-6.
GUO M J,GAO Y. Invulnerability analysis of power network based on complex network[J]. Complex Systems and Complex Science, 2022,19(4):1-6.
[10] LACASA L C, CEA M, ZANIN M. Jamming transition in air transportation networks[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(18): 3948-3954.
[11] KOTEGAWA T,FRY D,DELAURENTIS D,et al. Impact of service network topology on air transportation efficiency[J]. Transportation Research Part C, 2014, 40: 231-250.
[12] SHUANG Q,ZHANG M Y,YUAN Y B.Node vulnerability of water distribution networks under cascading failures[J]. Reliability Engineering and System Safety, 2014(124): 132-141.
[13] LEI W,MA S,MA J.Robustness improvements of scale-free networks against cascading breakdown[J]. Europhysics Letters, 2022, 138(3): 031002.
[14] LI S,LU D,WU X, et al. Enhancing the power grid robustness against cascading failures under node-based attacks[J]. Modern Physics Letters B, 2021, 35(9): 2150152.
[15] SHAO J, BULDYREV S V, HAVLIN S,et al. Cascade of failures in coupled network systems with multiple support-dependence relations[J]. Physical Review E, 2011, 83(3): 036116.
[16] SCHNEIDER C M, YAZDANI N,ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific reports, 2013, 3(1): 1-7.
[17] GUANG Z H,CHEN L,QIAN T H,Routing in scale-free networks based on expanding betweenness centrality[J]. Physica A: Statistical Mechanics and Its Applications,2011,390(6): 1131-1138.
[18] SYDNEY A, SCOGLIO C, GRUENBACHER D. Optimizing algebraic connectivity by edge rewiring[J]. Applied Mathematics and Computation, 2013, 219(10): 5465-5479.
[19] HUANG S, LU Z, DEB K, et al. Revisiting Residual Networks for Adversarial Robustness:An Architectural Perspective[DB/OL].[2023-9-15]. https://www.semanticscholar.org/reader/02f1243778bced398c4949cf90629742175ad79b.
[20] YANG Y,LI Z,CHEN Y, et al. Improving the robustness of complex networks with preserving community structure.[J]. PloS One, 2015, 10 (2): e0116551.
[21] JALILI M, YU X. Enhancement of Synchronizability in Networks with Community Structure through Adding Efficient Inter-Community Links[J]. IEEE Transactions on Network Science & Engineering, 2017, 3(2): 106-116.
[22] ZHONG J Y,LIANG M G,GUO D C.Enhancing network performance by edge addition[J]. International Journal of Modern Physics C, 2011, 22(11): 1211-1226.
[23] MARSDEN P V. Network Centrality, Measures of[J]. International Encyclopedia of the Social & Behavioral Sciences, 2015, 2(11):532-539.
[24] 吴俊,邓烨,王志刚,等. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022,19(3): 1-13.
WU J,DENG Y,WANG Z G, et al. Status and prospects on disintegration of complex networks[J]. Complex Systems and Complex Science, 2022,19(3): 1-13.
[25] 崔强,谭敏生,王静.复杂网络攻击与修复策略[J]. 网络安全技术与应用, 2010(1):35-37.
CUI Q,TAN M S,WANG J. Complex network attack and repair strategies[J]. Network Security Technology & Application, 2010(1): 35-37.
[26] 胡文波.流形上的子空间聚类算法及应用[D]. 无锡:江南大学,2021.
HU W B. Subspace clustering algorithm and its application on manifolds [D]. Wuxi:Jiangnan University, 2021.
[27] GAN Z,LIANG J.Understanding human mobility within metro networks-flow distribution and community detection[J].Promet-TrafficTransportation,2021,33(3):413-423.
[28] GUERREROM,MONTOYA G F,BAOS R, et al.Community detection in national-scale high voltage transmission networks using genetic algorithms[J].Advanced Engineering Informatics,2018(38).232-241.
[29] BARABASI A L,Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439):509-512.
[1] 高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
[2] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[3] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[4] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[5] 周建云, 刘真真, 许小可. 参照零模型的实证网络传播影响因素分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 40-47.
[6] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[7] 徐兵, 赵亚伟, 徐杨远翔. 基于关联群演化相似度的社团追踪算法[J]. 复杂系统与复杂性科学, 2019, 16(1): 14-25.
[8] 范如国, 崔迎迎, 张应青. 多元偏好、社团结构与网络合作涌现仿真研究[J]. 复杂系统与复杂性科学, 2016, 13(4): 26-34.
[9] 贾珺, 胡晓峰, 贺筱媛. 基于节点动态连接度的网络社团划分算法[J]. 复杂系统与复杂性科学, 2016, 13(4): 56-61.
[10] 陈增强, 谢征, 张青. 基于非负矩阵分解的复杂网络重构[J]. 复杂系统与复杂性科学, 2016, 13(3): 26-32.
[11] 李婵婵, 蒋国平. 社团结构网络环境下SIS病毒传播建模与分析[J]. 复杂系统与复杂性科学, 2016, 13(2): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed