Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 123-129    DOI: 10.13306/j.1672-3813.2026.01.015
  研究前沿 本期目录 | 过刊浏览 | 高级检索 |
基于扰动补偿的多离散Euler-Lagrange系统包容控制
郭鑫晨1, 宋传明1, 梁振英2
1.山东交通学院轨道交通学院,济南 250357;
2.山东理工大学数学与统计学院,山东 淄博 255000
Disturbance-Compensation-Based Containment Control for Multiple Discrete-Time Euler-Lagrange Systems
GUO Xinchen, SONG Chuanming, LIANG Zhenying
1. School of Rail Transportation, ShanDong JiaoTong University, Jinan 250357, China;
2. School of Mathematics and Statistics, ShanDong University of Technology, Zibo 255000, China
全文: PDF(2286 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究多离散Euler-Lagrange(简记为EL)系统的包容控制问题,运用欧拉一阶近似方法将离散EL系统转化为一类二阶非线性系统,并提出一个扰动识别器来估计系统的复合扰动。引入一个由领导者状态生成的虚拟轨迹将包容控制问题转化为跟踪控制问题,通过设计一个包含已知非线性项和扰动补偿的状态反馈控制器获得了跟踪误差动态。分别讨论了跟踪误差的有限时间有界性以及指数最终有界性,并推导出控制器增益需要满足的条件。通过对一组双连杆机械臂系统进行数值仿真实验,验证了两种不同性能下提出的控制方案的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鑫晨
宋传明
梁振英
关键词 多离散Euler-Lagrange系统包容控制扰动识别器有限时间有界性指数最终有界性    
Abstract:The containment control problem for multiple discrete-time Euler-Lagrange (EL for short) systems is studied in this paper. Firstly, the discrete-time EL system is transformed into a discrete-time second-order nonlinear system through the famous Euler’s first-order approximation method, and a local disturbance identifier is designed to estimate the compound disturbance for each EL system. Meanwhile, the tracking error dynamics are obtained by designing a state feedback controller involving both the available nonlinear term and the compensation of disturbances. Then, the finite-time boundedness and exponential ultimate boundedness of tracking errors are guaranteed, respectively, by selecting suitable controller gains. Finally, the effectiveness of the proposed control scheme is further verified by a numerical simulation of a group of two-link robotic arm systems.
Key wordsmultiple discrete-time Euler-Lagrange systems    containment control    disturbance identifier    finite-time boundedness    exponential ultimate boundedness
收稿日期: 2024-03-05      出版日期: 2026-02-13
ZTFLH:  TP13  
  O231.2  
基金资助:山东省自然科学基金(ZR2021MF072)
通讯作者: 宋传明(1995-),男,山东济南人,博士,讲师,主要研究方向为仿人柔性关节驱动系统控制等。   
作者简介: 郭鑫晨(1993-),男,山东聊城人,博士,讲师,主要研究方向为多智能体系统一致性控制、滑模控制等。
引用本文:   
郭鑫晨, 宋传明, 梁振英. 基于扰动补偿的多离散Euler-Lagrange系统包容控制[J]. 复杂系统与复杂性科学, 2026, 23(1): 123-129.
GUO Xinchen, SONG Chuanming, LIANG Zhenying. Disturbance-Compensation-Based Containment Control for Multiple Discrete-Time Euler-Lagrange Systems[J]. Complex Systems and Complexity Science, 2026, 23(1): 123-129.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.015      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/123
[1] 杨冉. 符号网络上分数阶时滞多智能体系统的协同控制研究[D]. 安徽: 安徽大学, 2023.
YANG R. Research on cooperative control of fractional multi-agent systems with delays on signed networks[D]. Anhui: Anhui University, 2023.
[2] SU H S, WU Y L, ZHANG L R, et al. Structure-free containment control for uncertain underactuated multiple euler-lagrange systems[J]. Science China-Information Sciences, 2023, 66(11): 212203.
[3] YAO D Y, WU Y Y, REN H R, et al. Event-based adaptive sliding-mode containment control for multiple networked mechanical systems with parameter uncertainties[DB/OL]. [2024-03-05]. http://doi.org/10.1109/TASE.2024.3349634.
[4] XU T, DUAN Z S, SUN Z Y, et al. Distributed fixed-time coordination control for networked multiple Euler-Lagrange systems[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 4611-4622.
[5] CHEN L J, HAN T, XIAO B, et al. Predefined-time hierarchical controller-estimator time-varying formation-containment tracking for multiple euler-lagrange systems with two-layer leaders[J]. Journal of the Franklin Institute, 2023, 360(7): 5242-5266.
[6] HAO Y, LIN Z X, HU K, at el. Layered fully distributed formation-containment tracking control for multiple unmanned surface vehicles[J]. Ocean Engineering, 2023, 270: 113658.
[7] LI Y, XU T, YANG R H, et al. Distributed adaptive finite-time fault-tolerant formation-containment control for networked Euler-Lagrange systems under directed communication interactions[J]. Neurocomputing, 2023, 560: 126839.
[8] DING T F, GE M F, LIU Z W, et al. Cluster time-varying formation-containment tracking of networked robotic systems via hierarchical prescribed-time ESO-based control[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 566-577.
[9] ZAGORIANOS A, TZAFESTAS S G, STAVRAKAKIS G S. Online discrete-time control of industrial robots[J]. Robotics and Autonomous Systems, 1995, 14(4): 289-299.
[10] JIANG Y, LIU L, FENG G. Adaptive optimal control of networked nonlinear systems with stochastic sensor and actuator dropouts based on reinforcement learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3107-3120.
[11] CHEN Y, GUO B, LIU Y Z, et al. Adaptive fault-tolerant control for mechanical manipulator systems with actuator fault[J]. International Journal of Control Automation and Systems, 2022, 20(7): 2326-2339.
[12] CHENG P, HE S P, STOJANOVIC V, et al. Fuzzy fault detection for Markov jump systems with partly accessible hidden information: an event-triggered approach[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7352-7361.
[13] SUN F C, LI H X, LIU H P. Neuro-fuzzy dynamic-inversion-based adaptive control for robotic manipulators-discrete time case[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1342-1351.
[14] GUO X C, WEI G L. Distributed sliding mode consensus control for multiple discrete-time Euler-Lagrange systems[J]. Applied Mathematics and Computation, 2023, 446: 127878.
[15] 杨怡泽, 杨洪勇, 刘凡. 离散时间多智能体系统群集运动的快速收敛[J]. 复杂系统与复杂性科学, 2018, 15(1): 56-61.
YANG Y Z, YANG H Y, LIU F. Fast convergence for flocking motion of discrete time multi-agent systems[J]. Complex Systems and Complexity Science, 2018, 15(1): 56-61.
[16] 任佼佼. 几类时滞控制系统的相关性能分析研究[D]. 四川: 电子科技大学, 2018.
REN J J. Qualitative studies of control systems with delay[D]. Sichuan: University of Electronic Science and Technology of China, 2018.
[1] 孟卫臣, 王庆芝, 刘永超, 傅保增. 间歇测量下具有外源干扰的二阶多智能体系统的包容控制[J]. 复杂系统与复杂性科学, 2025, 22(4): 109-117.
[2] 李勃, 陈增强, 刘忠信, 张青. 含时延的多智能体系统的多静态领导者包容控制[J]. 复杂系统与复杂性科学, 2016, 13(2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed