Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 19-25    DOI: 10.13306/j.1672-3813.2016.03.003
  本期目录 | 过刊浏览 | 高级检索 |
空间网络的标度性质对Naming Game演化行为的影响
庄倩1, 沈哲思2, 何琳1, 狄增如2
1.南京农业大学信息科学技术学院,南京 210095;
2.北京师范大学系统科学学院,北京 100875
Effects of Geographic Scaling Property on the Evolution of Naming Game
ZHUANG Qian1, SHEN Zhesi2, HE Lin1, DI Zengru2
1. College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. School of Systems Science, Beijing Normal University, Beijing 100875, China
全文: PDF(1039 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于社会网络结构对于信息传播、共识形成等社会行为的重要影响,在有限能量约束条件下,通过添加距离服从幂律分布的长程连边,构造出具有标度性质的空间网络。在此空间网络上,讨论了引入无意收听机制的Naming Game 模型的演化行为。研究发现,存在一个最优的幂指数,使得该空间网络上的Naming Game 模型收敛时间最短,当能量约束足够大时,这一最优幂指数趋于1.5附近。本研究说明,社会关系网络中的空间性质对于社会集体认同的形成有很大的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄倩
沈哲思
何琳
狄增如
关键词 空间网络标度性质Naming Game收敛    
Abstract:The structure of social networks is of paramount importance in collective behaviors,e.g. information propagation, consensus and formation of social norms. In this paper, a special network is constructed by adding remote links among nodes over lattice graphs with total energy constraints.A power law distribution is used to model the relation between the link probability and the distance.We study the effect of geographic scaling property on the dynamics of Naming Game with a group interaction rule. We find that there exists an optimal parameter value which minimizes the time to converge to global consensus. When the total energy constraint is large enough the optimal parameter value is approximately 1.5. Numerical simulations indicate that the geographic scaling property in social network plays an important role in the emergence of social collective behavior and rules.
Key wordsspatial networks    scaling property    Naming Game    convergence
收稿日期: 2015-03-03      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:国家社会科学基金(14CTQ044);国家自然科学基金(70974084, 61174150);北京市优秀博士学位论文指导教师科技项目(20121002704)
作者简介: 庄倩(1984-),女,黑龙江肇东人,博士,讲师,主要研究方向为复杂系统的演化机理。
引用本文:   
庄倩, 沈哲思, 何琳, 狄增如. 空间网络的标度性质对Naming Game演化行为的影响[J]. 复杂系统与复杂性科学, 2016, 13(3): 19-25.
ZHUANG Qian, SHEN Zhesi, HE Lin, DI Zengru. Effects of Geographic Scaling Property on the Evolution of Naming Game[J]. Complex Systems and Complexity Science, 2016, 13(3): 19-25.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.003      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/19
[1] 潘向东,杨建梅.Naming Game模型的研究进展及应用[J].复杂系统与复杂性科学, 2009, 6(2): 87-92.
Pan Xiangdong, Yang Jianmei. A survey of the development and application of Naming Game model [J].Complex Systems and Complexity Science, 2009, 6(2): 87-92.
[2] Steels L.The synthetic modeling of language origins[J].Evolution of Communication, 1997, 1(1): 1-34.
[3] Kirby S. Natural language from artificial life [J].Artificial Life, 2002, 8(2): 185-215.
[4] Steels L. A self-organizing spatial vocabulary[J].Artificial Life, 1995, 2(3): 319-332.
[5] Lu Q, Korniss G, Szymanski B K. Naming games in two-dimensional and small-world-connected random geometric networks[J].Phys Rev E, 2008, 77: 016111.
[6] Briscoe T. Linguistic Evolution Through Language Acquisition: Formal and Computational Models[M].Cambridge: Cambridge University Press,2002.
[7] Hurford J, Knight C, Studdert-Kennedy M. Approach to the Evolution of Human Language[M].Cambridge: Cambridge University Press,1999.
[8] Baronchelli A, Felici M, Caglioti E, et al. Sharp transition towards shared vocabularies in multi-agent systems[J].Stat Mech, 2005, 6014: 0509075.
[9] Dorogovtsev N, Mendes J F F. Evolution of Networks: from Biological Nets to the Internet and WWW[M].Oxford: Oxford University Press, 2003.
[10] Pastor-Satorras R, Vespignani A. Evolution and Structure of the Internet: a Statistical Physics Approach[M].Cambridge: Cambridge University Press, 2004.
[11] Gao Y, Chen G R, Chan R H M. Naming game on networks: let everyone be both speaker and hearer [J].Scientific Reports, 2014, 6:149.
[12] Dall’Asta L, Baronchelli A, Barrat A, et a1.Agreement dynamics on small-world networks [J].Europhys Lett, 2006, 73: 969.
[13] Barrat A, Baronchelli A, Dall’Asta L, et al. Agreement dynamics on interaction networks with diverse topologies [J].Chaos, 2007, 17: 026111.
[14] Baronchelli A, Dall’Asta L, Barrat A, et al. The role of topology on the dynamics of the Naming Game [J].EurPhys J Special Topics, 2007, 143: 233-235.
[15] Liu R R, Wang W X, Lai Y C, et al. Optimal convergence in naming game with geography-basednegotiation on small-world networks [J].Phys Lett, 2011, 375: 363-367.
[16] Baronchelli A, Dall’Asta L, Barrat A, Loreto V. Topology-induced coarsening in language games[J].Phys Rev E, 2006, 73: 015102(R).
[17] Dall’Asta L, Baronchelli A, Barrat A, et al. Nonequilibrium dynamics of language games on complex networks [J].Phys Rev E, 2006, 74: 036105.
[18] Wang W X, Lin B Y, Tang C L, et al. Agreement dynamics of finite-memory language games on networks [J].Eur Phys J B, 2007, 60: 529-536.
[19] Brigatti E. Consequence of reputation in an open-ended naming game[J].Phys Rev E, 2008, 78: 046108.
[20] Maity S K, Mukherjee A, Tria F, et al. Emergence of fast agreement in an overhearing population: the case of the naming game [J].Euro Phys Lett, 2013, 101(6): 68004.
[21] Liben-Nowell D, Novak J, Kumar R, et al. Geographic routing in social networks [J].Proc Natl Acad Sci USA, 2005, 102(33): 11623-11628.
[22] Adamic L, Adar E.How to Search a Social Network [J].Social Networks, 2005, 27(3): 187-203.
[23] Lambiotte R, Blondel V D, De Kerchove C, et al,|Geographical dispersal of mobile communication networks [J].Physica A, 2008, 387: 5317-5325.
[24] Yook S H, Jeong H, Barabási A L. Modeling the Internet's large-scale topology [J].Proc Natl Acad Sci USA, 2002, 99: 13382-13386.
[25] 黎勇,胡延庆,张晶,等. 空间网络综述[J].复杂系统与复杂性科学, 2010, 7(2/3): 145-163.
Li Yong, Hu Yanqing, Zhang Jing, et al.Review on spatial networks[J].Complex Systems and Complexity Science, 2010, 7(2/3): 145-163.
[26] 钭斐玲,胡延庆,黎勇,等.空间网络上的随机游走[J].物理学报, 2012, 61(17): 571-577.
Dou Feiling, Hu Yanqing,Li Yong, et al. Random walks on spatial networks [J].Acta Physica Sinica, 2012, 61(17): 571-577.
[27] 黎勇,钭斐玲,樊瑛,等.二维有限能量约束下最优导航问题的理论分析[J].物理学报, 2012, 61(22): 546-551.
Li Yong,Dou Feiling, Fan Ying, et al.Theoretical analysis on optimal navigation with totalenergy restriction in a two-dimensional lattice [J].ActaPhysicaSinica,2012, 61(22): 546-551.
[28] Viswanathan G M, Buldyrev S V, Havlin S, et al. Optimizing the success of random searches [J].Nature, 1999, 401: 911-914.
[29] Viswanathan G M,AfanasyevV, Buldyrev S V, et al. Levy fights in random searches [J].Physica A, 2000, 282: 1-12.
[30] Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel [J].Nature, 2006, 439: 462-465.
[31] Shlesinger M F. The structure of suspended graphene sheets [J].Nature, 2006, 2: 60-63.
[32] Gonzalez M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns [J].Nature, 2008, 453: 779-782.
[33] Yang H, Nie Y C, Zeng A, et al. Scaling properties in spatial networks and their effects on topology and traffic dynamics [J].Euro Phys Lett, 2010, 89: 58002.
[34] Li G, Reis S D S, Moreira A A, et al. Towards design principles for optimal transport networks [J].Phys Rev E, 2010, 104: 018701.
[35] Barthélemy M. Spatial networks [J].Physics Reports, 2011, 499: 1–101.
[36] Barrat A, Weigt M. On the properties of small-world network models [J].Euro Phys J B, 2000, 13: 547.
[37] Barthélemy M, Flammini A. Optimal traffic networks [J].J Stat Mech, 2006, L07002.
[38] Bradde S, Caccioli F, Dall’asta L, et al. Critical fluctuations in spatial complex networks [J].Phys Rev Lett, 2010, 104: 218701.
[39] Jespersen S, Sokolov I M, Blumen A. Relaxation properties of small-world networks [J].Phys Rev E, 2000, 62: 4405-4408.
[40] Monasson R. Diffusion, localization and dispersion relations on small-world lattices [J].Euro Phys B, 1999, 12: 555-567.
[41] Chowdhury D, Cross M C. Synchronization of oscillators with long range power law interactions [J].Phys Rev E, 2010, 82:016205.
[42] Zeng A, Zhou D, Hu Y Q, et al. Dynamics on spatial networks and the effect of distance coarse graining [J].Physica A, 2011, 390(2122): 3962–3969.
[43] Murray J D. Mathematical Biology[M].New York: Springer, 1993: 315–379.
[44] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model [J].Phys Lett A, 1999, 263: 341-346.
[45] 汪小帆, 李翔, 陈关荣. 网络科学导论[M].北京: 高等教育出版社, 2012.
[1] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[2] 徐静, 钱江海. 动态空间约束网络模型及其双段幂律特征[J]. 复杂系统与复杂性科学, 2020, 17(3): 86-93.
[3] 韩博, 刘佳, 耿金花, 段法兵. 加权随机汇池网络中递归最小二乘算法研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed