Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (3): 26-32    DOI: 10.13306/j.1672-3813.2016.03.004
  本期目录 | 过刊浏览 | 高级检索 |
基于非负矩阵分解的复杂网络重构
陈增强1,2, 谢征1, 张青2
1.南开大学计算机与控制工程学院天津市智能机器人技术重点实验室,天津 300071;
2.中国民航大学理学院,天津 300300
Complex Network Reconstruction Based on Nonnegative Matrix Factorization
CHEN Zengqiang1,2, XIE Zheng1, ZHANG Qing2
1. Tianjin Key Laboratory of Intelligent Robotics, College of Computer & Control Engineering,Nankai University, Tianjin 300071, China;
2. College of Science, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(1001 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 将网络连边的产生机制和其社团结构结合在一起,基于社团结构决定网络连边的假设推导出节点间的连接概率矩阵并表达为矩阵乘积的形式,然后利用非负矩阵分解得到节点间的连接概率矩阵进行网络重建。设计实验并在几个真实的网络数据上测试,相比基于相似度的网络重构算法,该算法取得了更好的网络重构效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈增强
谢征
张青
关键词 复杂网络网络重构社团结构连接概率矩阵非负矩阵分解    
Abstract:Based on the hypothesis that community structure determines the network connections, the connection probability matrix which describes the nodes’ community structure can be transfered into the form of product of matrices. The nonnegative matrix factorization is applied here to get the connection probability matrix and then obtain the reconstruction. Experiments on several real world datasets show that the proposed algorithm outperforms some other algorithm which are based on similarity indexes.
Key wordscomplex network    network reconstruction    community structure    connection probability matrix    nonnegative matrix factorization.
收稿日期: 2014-09-05      出版日期: 2025-02-25
ZTFLH:  N94  
基金资助:国家自然科学基金(61174094);天津自然科学基金(14JCYBJC18700,13JCYBJC17400)
作者简介: 陈增强(1964-),男,天津人,博士,教授,主要研究方向为复杂网络,多智能体系统。
引用本文:   
陈增强, 谢征, 张青. 基于非负矩阵分解的复杂网络重构[J]. 复杂系统与复杂性科学, 2016, 13(3): 26-32.
CHEN Zengqiang, XIE Zheng, ZHANG Qing. Complex Network Reconstruction Based on Nonnegative Matrix Factorization[J]. Complex Systems and Complexity Science, 2016, 13(3): 26-32.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.03.004      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I3/26
[1] 汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社.2012:3-27.
[2] 吕琳媛, 陆君安, 张子柯,等. 复杂网络观察[J].复杂系统与复杂性科学, 2010, 7(2/3): 173-186.
Lü Linyuan, Lu Junan, Zhang Zike, et al. Looking into complex networks [J].Complex Systems and Complexity Science, 2010, 7(2/3): 173-186.
[3] Albert R, Barabási|A L. Statistical mechanics of complex networks [J].Reviews of Modern Physics, 2002, 74(1): 47-97.
[4] 方义,夏承遗,刘子超,等.闪烁小世界网络上疾病传播的动态行为研究[J].复杂系统与复杂性科学,2011, 8(3): 34-37.
Fang Yi, Xia Chengyi, Liu Zichao, et al. Dynamical behavior of disease spreading on blinking small-world networks [J].Complex Systems and Complexity Science, 2011, 8(3): 34-37.
[5] Xia C Y, Wang Z, Sanz J, et al. Effects of delayed recovery and nonuniform transmission on the spreading of diseases in complex in complex networks [J].Physica A, 2013, 392, 1577-1585.
[6] Wang X F, Chen G R. Pinning control of scale-free dynamical networks [J].Physica A, 2002, 310(3/4): 521-531.
[7] 吕琳瑗,周涛.链路预测[M].北京:高等教育出版社.2013: 42-56,172-212.
[8] Guimerà R, Sales-Pardo M. Missing and spurious interactions and the reconstruction of complex networks [J].Proceedings of the National Academy of Sciences, 2009, 106(52): 22073-22078.
[9] Shen Z, Wang W X, Fan Y, et al. Reconstructing propagation networks with natural diversity and identifying hidden sources[J].Nature Communications, 2014, 5(5):4323.
[10] Lü L, Zhou T. Link prediction in complex networks: a survey[J].Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170.
[11] Liben‐Nowell D, Kleinberg J. The link-prediction problem for social networks[J].Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031.
[12] Zhou T, Lü L, Zhang Y C. Predicting missing links via local information[J].The European Physical Journal B-Condensed Matter and Complex Systems, 2009, 71(4): 623-630.
[13] Clauset A, Moore C, Newman M E J. Hierarchical structure and the prediction of missing links in networks [J].Nature, 2008, 453(7191): 98-101.
[14] Gao S, Denoyer L, Gallinari P. Temporal link prediction by integrating content and structure information [C]//Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Glasgow, Scotland, UK: ACM, 2011: 1169-1174.
[15] Candès E J, Recht B. Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics, 2009, 9(6): 717-772.
[16] Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J].Journal of the ACM, 2011, 58(3): 11-12.
[17] 程学旗, 沈华伟. 复杂网络的社区结构[J].复杂系统与复杂性科学, 2011, 8(1): 57-70.
Cheng Xueqi, Shen Huawei. Community structure of complex networks [J].Complex Systems and Complexity Science, 2011, 8(1): 57-70.
[18] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization [J].Nature, 1999, 401(6755): 788-791.
[19] Ding C, He X, Simon H D. On the equivalence of nonnegative matrix factorization and spectral clustering[C]//SIAM International Conference on Data Mining. Vancouver, British Columbia, Canada: SIAM, 2005, 5: 606-610.
[20] Ding C, Li T, Peng W, et al. Orthogonal nonnegative matrix t-factorizations for clustering[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA: ACM, 2006: 126-135.
[21] Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems. Massachusetts, Cambridge, USA: The MIT Press, 2001: 556-562.
[22] Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560.
[23] Zachary W W. An information flow model for conflict and fission in small groups [J].Journal of Anthropological Research, 1977: 33(4): 452-473.
[24] Vladimir B, Andrej M. Pajek datasets [DB/OL].[2013-12-30] , http://vlado.fmf.uni-lj.si/pub/networks/data/mix/USAir97.net.
[25] Duch J, Arenas A. Community detection in complex networks using extremal optimization [J].Physical Review E, 2005, 72(2): 027104.
[26] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J].Nature, 1998, 393(6684): 440-442.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[4] 高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
[5] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[6] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[7] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[8] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[9] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[10] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[11] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[12] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[13] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[14] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[15] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed