Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 103-110    DOI: 10.13306/j.1672-3813.2017.01.015
  本期目录 | 过刊浏览 | 高级检索 |
一个广义Hamilton系统的混沌特性及电路实现
仓诗建1a,2, 吴爱国2, 王忠林3, 薛薇1b
1.天津科技大学a.产品设计系, b.电子信息与自动化学院,天津 300457;
2.天津大学电气工程与自动化学院, 天津 300071;
3.滨州学院物理与电子科学系, 山东 滨州 256604
Chaotic Behavior of a Generalized Hamiltonian System and Its Circuit Implementation
CANG Shijian1a,2, WU Aiguo2, WANG Zhonglin3, XUE Wei1b
1. a.Department of Product Design, b.School of Electronic Information and Automation, Tianjin University of Science & Technology, Tianjin 300457, China;
2. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China;
3. Department of Physics and Electronics Science, Binzhou University, Binzhou 256604, China
全文: PDF(1634 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以广义Hamilton系统为基础,通过增加耗散量和外部输入,形成广义耗散Hamilton系统。通过配置广义耗散Hamilton系统的结构矩阵和外部输入,提出一个简单三维单平衡点系统来说明此类系统存在混沌行为。借助相图、庞加莱截面、Lyapunov指数谱、分形图和功率谱等数值分析方法说明当外部输入逐步增强时该系统存在周期轨道和混沌运动。与一般已知的三维混沌系统相比,该系统的特点为:耗散性与系统的状态变量相关;处于混沌状态时的系统的Lyapunov维数接近3。 最后设计了该系统的实验电路,示波器观测到的实验结果进一步验证了该系统确实存在混沌行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仓诗建
吴爱国
王忠林
薛薇
关键词 广义耗散Hamilton系统混沌Lyapunov维电路实现    
Abstract:A kind of generalized Hamiltonian systems with dissipative structure and external input is proposed. By configuring its structure matrix and external input, a simpler three-dimensional dynamical system with only one fixed point is designed to illustrate the existence of chaos. Useful tools, including phase portrait, Poincaré section, Lyapunov exponents, bifurcation diagram and power spectrum, are used for detecting chaotic behavior of the proposed system with the enhancement of DC input. Compared with the known three-dimensional chaotic systems, the proposed system has the following two characteristics: Its dissipativity is related to system state variables and its Lyapunov dimension is closer to 3. Finally, a circuit implementation of the new system is presented and the results recorded on an analogue oscilloscope further verify the existence of chaotic behavior.
Key wordsGeneralized dissipative Hamiltonian system    chaos    Lyapunov dimension    circuit implementation
收稿日期: 2015-10-27      出版日期: 2025-02-24
ZTFLH:  O193  
基金资助:国家自然科学基金(61573199,61403274);天津市应用基础与前沿技术研究基金(13JCQNJC03600)
作者简介: 仓诗建(1979-),男,江苏盐城人,博士,副教授,主要研究方向为非线性动力学系统建模和控制。
引用本文:   
仓诗建,吴爱国,王忠林,薛薇. 一个广义Hamilton系统的混沌特性及电路实现[J]. 复杂系统与复杂性科学, 2017, 14(1): 103-110.
CANG Shijian, WU Aiguo, WANG Zhonglin, XUE Wei. Chaotic Behavior of a Generalized Hamiltonian System and Its Circuit Implementation[J]. Complex Systems and Complexity Science, 2017, 14(1): 103-110.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.015      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/103
[1] Dirksz D A, Scherpen J M, Steinbuch M. A port-Hamiltonian approach to visual servo control of a pick and place system[J].Asian J Control, 2012, 16(3): 5561-5566.
[2] Shojiguchi A, Baba A, Li C B, et al. Wavelet analysis and Arnold web picture for detecting energy transfer in a Hamiltonian dynamical system[J].Laser Phys, 2006, 16(7): 1097-1106.
[3] Lu J H, Chen G R, Cheng D Z. A new chaotic system and beyond: the generalized Lorenz-like system[J].Int J Bifurcat Chaos, 2004, 14(5): 1507-1537.
[4] Sakthivel G, Rajasekar S, Thamilmaran K, et al. Statistical measures and diffusion dynamics in a modified Chua's circuit equation with multiscroll attractors[J].Int J Bifurcat Chaos, 2012, 22(1): 1250004.
[5] Cang S J, Wang Z H, Chen Z Q, et al. Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures[J].Nonlinear Dynam, 2014, 75(4): 745-760.
[6] Sprott J C. A Proposed standard for the publication of new chaotic systems[J].Int J Bifurcat Chaos, 2011, 21(9): 2391-2394.
[7] Li W, Chen S G. An example of Hamiltonian system and controlling chaos with simple limiters[J].Acta Phys Sin-Ch Ed, 2001, 50(8): 1434-1439.
[8] Farina D, Pozzoli R. Large-amplitude oscillations and chaos in a Hamiltonian plasma system with many degrees of freedom[J].Phys Rev E, 2004, 70(3): 036407.
[9] Gan C B, Wang Y H, Yang S X, et al. Noisy chaos in a quasi-integrable hamiltonian system with two dof under harmonic and bounded noise excitations[J].Int J Bifurcat Chaos, 2012, 22(5): 1250117.
[10] Tao J W, Shi Y W, Chang W X. Chaotic anti-control of a port control Hamilton system[J].Acta Phys Sin-Ch Ed, 2004, 53(6): 1682-1686.
[11] Khan A, Shahzad M. Control of chaos in the hamiltonian system of mimas-tethys[J].Astron J, 2008, 136(5): 2201-2203.
[12] Wang Y Z, Li C W, Cheng D Z. New approaches to generalized Hamiltonian realization of autonomous nonlinear systems[J].Sci China Ser F, 2003, 46(6): 431-444.
[13] Zhang S Y, Deng Z C. Lie group integration method for dissipative generalized Hamiltonian system with constraints[J].Int J Nonlin Sci Num, 2003, 4(4): 373-377.
[14] Cang S J, Chen Z Q, Yuan Z Z. Analysis and circuit implementation of a new four-dimensional non-autonomous hyper-chaotic system[J].Acta Phys Sin-Ch Ed, 2008, 57(3): 1493-1501.
[1] 王贺元, 陈相霆. 强迫Lorenz模型混沌行为的力学机理分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 42-47.
[2] 张玉玺, 孙小淇. 概周期驱动二维正弦系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 53-57.
[3] 刘思洋, 安新磊, 施倩倩, 王越. 一类多涡卷Chua系统及其在图像加密中的应用[J]. 复杂系统与复杂性科学, 2024, 21(3): 85-92.
[4] 王越, 安新磊, 施倩倩, 刘思洋. 基于一个复混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2024, 21(3): 77-84.
[5] 赵奕凡, 沈云柱, 杜传斌. 一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 75-79.
[6] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
[7] 闫少辉, 顾斌贤, 宋震龙, 施万林. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 43-51.
[8] 吕恩胜. 改进的混沌反控制设计及在图像加密中的应用[J]. 复杂系统与复杂性科学, 2022, 19(4): 91-98.
[9] 颜闽秀, 谢俊红. 可调数目吸引子共存的混沌系统及同步控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 64-71.
[10] 闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
[11] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[12] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[13] 董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
[14] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[15] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed