Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 15-19    DOI: 10.13306/j.1672-3813.2017.01.003
  本期目录 | 过刊浏览 | 高级检索 |
网络演化博弈中的自组织临界性
曹亚娟, 刘旭升, 关剑月
兰州大学物理科学与技术学院, 兰州 730000
Self-organized Criticality in Spatial Evolutionary Games
CAO Yajuan, LIU Xusheng, GUAN Jianyue
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
全文: PDF(890 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 结合雪堆博弈模型与扩展的Bak-Sneppen(BS)模型,研究一维规则环状网络上合作行为的涌现与个体间的动力学关联性。通过统计系统平均合作概率随时间的演化,发现当系统演化到稳态时群体具有较高的合作水平。此外,统计了个体策略突变行为的雪崩尺寸及适应度最低个体间的距离分布,发现这两种分布可近似为幂律分布。这表明系统自组织达到了一种临界状态,在临界状态个体策略在系统尺度上相互关联,因此与系统中高水平合作行为的涌现有着紧密的关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹亚娟
刘旭升
关剑月
关键词 复杂网络雪堆博弈自组织临界性合作    
Abstract:We study the emergence of cooperation with self-organized criticality on a one-dimensional lattice by connecting Snowdrift Game and Bak-Sneppen (BS) model. We first calculate the mean cooperation probability of the system by Monte-Carlo simulation and the results show that there is a high level cooperation in the steady state,which is possible because the BS mechanism builds dynamical correlation between the least fit sites. Besides, we also measure the distribution of avalanche size and the distance between successive minimum fitness sites, which are well fit by a power law approximately. The power law distribution we measured shows that the system has reached a critical state. In the critical state the agents are correlated at all scales which closely connected with the high level cooperation in the system
Key wordscomplex networks    snowdrift game    self-organized criticality    cooperation
收稿日期: 2016-03-16      出版日期: 2025-02-24
ZTFLH:  N941.3  
基金资助:国家自然科学基金(11475074,11135001);兰州大学中央高校基本科研业务费专项资金(lzujbky-2014-32)
通讯作者: 关剑月(1981-),女,河北邯郸人,博士,副教授,主要研究方向为网络演化博弈动力学。   
作者简介: 曹亚娟(1991-),女,宁夏固原人,硕士研究生,主要研究方向为网络演化博弈动力学。
引用本文:   
曹亚娟, 刘旭升, 关剑月. 网络演化博弈中的自组织临界性[J]. 复杂系统与复杂性科学, 2017, 14(1): 15-19.
CAO Yajuan, LIU Xusheng, GUAN Jianyue. Self-organized Criticality in Spatial Evolutionary Games[J]. Complex Systems and Complexity Science, 2017, 14(1): 15-19.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.003      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/15
[1] Gould S J,Eldredge N.Punctuated equilibria:the tempo and mode of evolution reconsidered[J].Paleobiology, 1977, 3:115-151.
[2] Bak P,Tang C,Wiesenfeld K.Self-organized criticality: an explanation of the 1/f noise[J].Phys Rev Lett, 1987, 59:381-384.
[3] Aschwanden M J. Self-Organized Criticality Systems[M].Berlin, Warsaw: Open Academic Press, 2013: 483.
[4] Wang S J,Hilgetag C, Zhou C S. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations[J].Front Comput Neurosci,2011, 5:30.
[5] Wang S J, Zhou C. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks[J].New Journal of Physics, 2012, 14(2):023005.
[6] Wang S J, Ouyang G, Guang J, et al. Stochastic oscillation in self-organized critical states of small systems: sensitive resting state in neural systems[J].Physical Review Letters, 2016, 116(1): 018101.
[7] Ebel H, Bornholdt S. Coevolutionary games on networks[J].Physical Review E, 2002, 66(5): 056118.
[8] Smith J M. Evolution and the Theory of Games[M].New York: Cambridge University Press, 1982.
[9] Hamilton W D. The genetical evolution of social behaviour. II[J].Journal of Theoretical Biology, 1964, 7(1): 17-52.
[10] Wedekind C, Milinski M. Cooperation through image scoring in humans[J].Science, 2000, 288(5467): 850-852.
[11] Ohtsuki H, Iwasa Y. How should we define goodness?—reputation dynamics in indirect reciprocity[J].Journal of Theoretical Biology, 2004, 231(1): 107-120.
[12] Brandt H, Sigmund K. The logic of reprobation: assessment and action rules for indirect reciprocation[J].Journal of Theoretical Biology, 2004, 231(4): 475-486.
[13] Vukov J, Szabó G, Szolnoki A. Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs[J].Physical Review E, 2006, 73(6): 067103.
[14] Li P P, Ke J, Lin Z, et al. Cooperative behavior in evolutionary snowdrift games with the unconditional imitation rule on regular lattices[J].Physical Review E, 2012, 85(2): 021111.
[15] Vukov J, Szabó G. Evolutionary prisoner’s dilemma game on hierarchical lattices[J].Physical Review E, 2005, 71(3): 036133.
[16] Santos F C, Rodrigues J F, Pacheco J M. Graph topology plays a determinant role in the evolution of cooperation[J].Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1582): 51-55.
[17] Santos F C, Pacheco J M, Lenaerts T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations[J].Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(9): 3490-3494.
[18] Santos F C, Pacheco J M. Scale-free networks provide a unifying framework for the emergence of cooperation[J].Physical Review Letters, 2005, 95(9): 098104.
[19] Nowak M A. Five rules for the evolution of cooperation[J].Science, 2006, 314(5805): 1560-1563.
[20] Ebel H, Bornholdt S. Coevolutionary games on networks[J].Physical Review E, 2002, 66(5): 056118.
[21] Lim Y F, Chen K, Jayaprakash C. Scale-invariant behavior in a spatial game of prisoners’ dilemma[J].Physical Review E, 2002, 65(2): 026134.
[22] Killingback T, Doebeli M. Self-organized criticality in spatial evolutionary game theory[J].Journal of Theoretical Biology, 1998, 191(3): 335-340.
[23] Park S, Jeong H C. Emergence of cooperation with self-organized criticality[J].Journal of the Korean Physical Society, 2012, 60(3): 311-316.
[24] Li W, Luo Y, Wang Y F, et al. A mean-field Bak-Sneppen model with varying interaction strength[J].Chinese Science Bulletin, 2011, 56(34): 3639-3642.
[25] Doebeli M, Hauert C. Models of cooperation based on the Prisoner′s Dilemma and the Snowdrift game[J].Ecology Letters, 2005, 8(7): 748-766.
[26] Perc M, Wang Z. Heterogeneous aspirations promote cooperation in the prisoner's dilemma game[J].PLoS One, 2010, 5(12): e15117.
[27] Szabó G, Fath G. Evolutionary games on graphs[J].Physics Reports, 2007, 446(4): 97-216.
[28] Bak P, Sneppen K. Punctuated equilibrium and criticality in a simple model of evolution[J].Physical Review Letters, 1993, 71(24): 4083.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[5] 田梦龙, 张纪会. 跨层四向穿梭车仓库复合作业路径优化[J]. 复杂系统与复杂性科学, 2024, 21(3): 100-107.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[8] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[9] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[10] 吴洁, 谢小东, 盛永祥, 桂亮. 创新联合体潜在合作伙伴选择研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 104-111.
[11] 宋美, 王振源, 葛玉辉, 刘举胜. 混合所有制企业高管团队动态合作行为演化博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 85-91.
[12] 谢逢洁, 姚欣, 王思一. 高阶结构对无标度网络上合作行为演化的影响[J]. 复杂系统与复杂性科学, 2024, 21(1): 12-19.
[13] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[14] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[15] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed