Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (1): 88-95    DOI: 10.13306/j.1672-3813.2017.01.013
  本期目录 | 过刊浏览 | 高级检索 |
基于时间扩展网络制定的混合速度疏散算法
徐栋, 李响
华东师范大学地理信息科学教育部重点实验室,上海 200241
A Time-Extended Network Approach to Planning Multi-Velocity Evacuation
XU Dong, LI Xiang
Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
全文: PDF(1046 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对大规模应急疏散过程中基础设施的供给与快速产生的疏散交通需求之间的矛盾,提出一种基于时间扩展网络用于有组织计划的混合速度应急疏散算法,其主要思路是以疏散者位置及运动速度建立疏散组,通过标记路段的时间可用性确定不同疏散组的出发时间及路径,以达到避免交通冲突及确保疏散效率的目的。实验表明,该方法在确保疏散过程高效、有序进行的前提下,可获得与理论最优值接近的疏散结果,且疏散规模越大,逼近效果越好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐栋
李响
关键词 混合速度分阶段疏散时间扩展网络    
Abstract:To deal with the contradiction between the supply of infrastructures and the demand of multi-velocity traffic flow in a large scale evacuation, we present an algorithm based on time-extended network. It can be applied to making organized and staged evacuation plans. First, evacuees are grouped according to their locations and velocities. Then, individual starting time and route are allocated to each group in order to avoid any traffic conflict and ensure the efficiency of evacuation through recording time availability of each road segment. Following this plan, each group can move towards to the safe exit at their own velocity. Experiments demonstrate that, with this algorithm, the total evacuation time is close to the theoretical shortest evacuation time. And the larger the evacuation scale is, the better the algorithm performs.
Key wordsmulti-velocity    staged evacuation    time-extended network
收稿日期: 2015-04-15      出版日期: 2025-02-24
ZTFLH:  U491  
基金资助:国家高技术研究发展计划专项研究基金(2013AA122302)
作者简介: 徐栋(1989-),男,山东滨州人,硕士研究生,主要研究方向为交通地理信息系统与空间优化。
引用本文:   
徐栋,李响. 基于时间扩展网络制定的混合速度疏散算法[J]. 复杂系统与复杂性科学, 2017, 14(1): 88-95.
XU Dong, LI Xiang. A Time-Extended Network Approach to Planning Multi-Velocity Evacuation[J]. Complex Systems and Complexity Science, 2017, 14(1): 88-95.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.01.013      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I1/88
[1] Southworth F. Regional evacuation modeling: a state-of-the-art review[J].Oak Ridge National Labs, 1991,11(5): 511-521.
[2] Sheffi Y, Mahmassani H, Powell W B. A transportation network evacuation model[J].Transportation Research Part A: General, 1982, 16(3): 209-218.
[3] Kisko T M, Francis R L. EVACNET+: a computer program to determine optimal building evacuation plans[J].Fire Safety Journal,1985, 9(2): 211-220.
[4] Thompson P A, Marchant E W. Testing and application of the computer model ‘SIMULEX’[J].Fire Safety Journal, 1995, 24(2): 149-166.
[5] Cova T J, J. Microsimulation of neighborhood evacuations in the urban-wildland interface[J].Environment and Planning A, 2002, 34(12): 2211-2229.
[6] Chen X. Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies[J].The Journal of the Operational Research Society, 2008, 59(1): 25-33.
[7] Duanmu J, Taaffe K M, Chowdhury M, et al. Simulation analysis for evacuation under congested traffic scenarios: a case study[J].Simulation, 2012, 88(11): 1379-1389.
[8] Zong X, Xiong S, Xu H, et al. Space-time simulation model based on particle swarm optimization algorithm for stadium evacuation[J].Evolutionary Compution, 2014:194-201.
[9] Varas A, Cornejo M D, Mainemer D, et al. Cellular automaton model for evacuation process with obstacles[J].Physica A: Statistical Mechanics and Its Applications, 2007, 382(2): 631-642.
[10] Pelechano N, M A. Evacuation simulation models: Challenges in modeling high rise building evacuation with cellular automata approaches[J].Automation in Construction, 2008, 17(4): 377-385.
[11] Pan X, Han C S, Dauber K, et al. A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations[J].AI & SOCIETY, 2007, 22(2): 113-132.
[12] Ren C, Yang C, Jin S. Agent-based modeling and simulation on emergency evacuation[M].Complex Sciences:Springer, 2009, 1451-1461.
[13] Cheng W, Bo Y, Lijun L, et al. A modified particle swarm optimization-based human behavior modeling for emergency evacuation simulation system[C] ∥International Conference on Information & Automation. 2008: 23-28.
[14] Zheng Y, Chen J, Wei J, et al. Modeling of pedestrian evacuation based on the particle swarm optimization algorithm[J].Physica A: Statistical Mechanics and Its Applications. 2012, 391(17): 4225.
[15] Hamza-Lup G L, Hua K A, Peng R, et al. A maximum-flow approach to dynamic handling of multiple incidents in traffic evacuation management[J].Intelligent Transporation Systems, 2005:1147-1152.
[16] Zhang X, C G. A dynamic evacuation model for pedestrian-vehicle mixed-flow networks[J].Transportation Research Part C, 2014, 40: 75.
[17] Yamada T. A network flow approach to a city emergency evacuation planning[J].International Journal of Systems Science, 1996, 27(10): 931-936.
[18] Fleischer L, S M. Minimum cost flows over time without intermediate storage[C].SODA'03 Proceedings of the Fourteenth annual ACM-SIAM Symposium on Discrete Algorithms. PA, USA: Society for Industrial and Applied Mathematics, 2003: 66-75.
[19] Cova T J, J. A network flow model for lane-based evacuation routing[J].Transportation Research Part A. 2003, 37(7): 579-604.
[20] Lu Q, George B, Shekhar S. Capacity Constrained Routing Algorithms for Evacuation Planning: a Summary of Results[M].Advances in Spatial and Temporal Databases:Springer, 2005, 291-307.
[21] Xie C, Lin D, Waller S T. A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies[J].Transportation Research. 2010, 46(3): 295-316.
[22] Fang Z, Li Q, Li Q, et al. A space-time efficiency model for optimizing intra-intersection vehicle-pedestrian evacuation movements[J].Transportation Research Part C, 2013, 31: 112.
[23] Stepanov A, S J. Multi-objective evacuation routing in transportation networks[J].European Journal of Operational Research, 2009, 198(2): 435-446.
[24] Saadatseresht M, Mansourian A, Taleai M. Evacuation planning using multiobjective evolutionary optimization approach[J].European Journal of Operational Research. 2009, 198(1): 305-314.
[25] Yi W, K A. Ant colony optimization for disaster relief operations[J].Transportation Research Part E, 2007, 43(6): 660-672.
[26] Fang Z, Zong X, Li Q, et al. Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach[J].Journal of Transport Geography, 2011, 19(3): 443-451.
[27] Li Q, Fang Z, Li Q. Ant Colony Based Evacuation Route Optimization Model for Mixed Pedestrian-Vehicle Flows[M].Pedestrian and Evacuation Dynamics 2012:Springer, 2014, 1213-1224.
[28] Liu Y, Lai X, Chang G. Cell-based network optimization model for staged evacuation planning under emergencies[J].Transportation Research Record: Journal of the Transportation Research Board, 2006, 1964(1): 127-135.
[29] Sbayti H, Mahmassani H S. Optimal scheduling of evacuation operations[J].Transportation Research Record: Journal of the Transportation Research Board, 2006, 1964(1): 238-246.
[30] Li X, Huang B, Liu Z, et al. A novel method for planning a staged evacuation[J].Journal of Systems Science and Complexity, 2012, 25(6): 1093-1107.
[31] Chow W K, N. Waiting time in emergency evacuation of crowded public transport terminals[J].Safety Science, 2008, 46(5): 844-857.
[32] Sheffi Y. Urban transportation networks: equilibrium analysis with mathematical programming methods[D]. Englewood Cliffs, NJ: Prentice-Hall, 1985.
[1] 姜楠, 赵清海, 徐冲, 杜思雨. 基于局部博弈的单交叉口路径规划研究[J]. 复杂系统与复杂性科学, 2024, 21(4): 126-133.
[2] 戴守晨, 曲大义, 孟奕名, 杨玉凤, 王其坤. 交通流频变路段智能网联车辆换道演化博弈机制[J]. 复杂系统与复杂性科学, 2024, 21(3): 128-135.
[3] 胡嫣然, 邴其春, 张伟健, 沈富鑫, 高鹏, 刘东杰. 城市快速路交织区交通震荡演化特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 154-160.
[4] 吴易, 王庆芝. 基于编队和动态优先级的混合路口通行策略[J]. 复杂系统与复杂性科学, 2024, 21(1): 126-131.
[5] 纪鑫, 徐嘉明, 杨瑷玲, 于子兰, 唐铁桥. 突发传染病情况下高校行人流建模分析与管理控制:以高校食堂为例[J]. 复杂系统与复杂性科学, 2024, 21(1): 35-42.
[6] 李雪岩, 张同宇, 祝歆. 基于深度强化学习的通勤走廊韧性恢复双层规划[J]. 复杂系统与复杂性科学, 2024, 21(1): 92-99.
[7] 郭振起, 朱媛媛, 钟永光. 考虑复杂交通的废弃电器电子产品回收网络模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 81-89.
[8] 邓建华, 冯焕焕, 葛婷. 初始化对交通元胞自动机模型稳定性的影响[J]. 复杂系统与复杂性科学, 2023, 20(2): 105-110.
[9] 桂水荣, 蓝天飞, 陈水生, 葛世祺. 考虑车辆异质性的堵塞交通流模型研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 98-104.
[10] 王震邦, 宋运忠. 考虑多方利益的大规模共享停车匹配优化策略[J]. 复杂系统与复杂性科学, 2023, 20(2): 52-59.
[11] 牟亮, 赵红, 崔翔宇, 袁焕涛, 李燕, 仇俊政. 基于改进Lagrange乘子法的交通信号配时优化研究[J]. 复杂系统与复杂性科学, 2021, 18(1): 80-87.
[12] 李燕, 赵红, 牟亮, 仇俊政, 孙传龙, 刘晓童. 基于改进NSGAⅡ的左转待行区交叉口配时优化控制[J]. 复杂系统与复杂性科学, 2021, 18(1): 88-94.
[13] 李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
[14] 孙晓燕, 韩晓, 闫小勇, 王文旭, 姜锐, 贾斌. 交通出行选择行为实验研究进展[J]. 复杂系统与复杂性科学, 2017, 14(3): 1-7.
[15] 牟亮, 赵红, 李燕, 仇俊政, 崔翔宇, 袁焕涛. 基于改进NSGA-Ⅱ的区域交通信号优化控制[J]. 复杂系统与复杂性科学, 2021, 18(3): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed